Properties

Label 2-2900-5.4-c1-0-35
Degree $2$
Conductor $2900$
Sign $-0.447 + 0.894i$
Analytic cond. $23.1566$
Root an. cond. $4.81213$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.67i·3-s − 4.67i·7-s − 4.14·9-s − 0.672·11-s + 1.14i·13-s + 3.52i·17-s − 5.52·19-s + 12.4·21-s + 3.81i·23-s − 3.05i·27-s + 29-s − 1.52·31-s − 1.79i·33-s + 7.16i·37-s − 3.05·39-s + ⋯
L(s)  = 1  + 1.54i·3-s − 1.76i·7-s − 1.38·9-s − 0.202·11-s + 0.317i·13-s + 0.855i·17-s − 1.26·19-s + 2.72·21-s + 0.795i·23-s − 0.588i·27-s + 0.185·29-s − 0.274·31-s − 0.313i·33-s + 1.17i·37-s − 0.489·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2900\)    =    \(2^{2} \cdot 5^{2} \cdot 29\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(23.1566\)
Root analytic conductor: \(4.81213\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2900} (349, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2900,\ (\ :1/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1098266048\)
\(L(\frac12)\) \(\approx\) \(0.1098266048\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
29 \( 1 - T \)
good3 \( 1 - 2.67iT - 3T^{2} \)
7 \( 1 + 4.67iT - 7T^{2} \)
11 \( 1 + 0.672T + 11T^{2} \)
13 \( 1 - 1.14iT - 13T^{2} \)
17 \( 1 - 3.52iT - 17T^{2} \)
19 \( 1 + 5.52T + 19T^{2} \)
23 \( 1 - 3.81iT - 23T^{2} \)
31 \( 1 + 1.52T + 31T^{2} \)
37 \( 1 - 7.16iT - 37T^{2} \)
41 \( 1 - 2.85T + 41T^{2} \)
43 \( 1 + 8.96iT - 43T^{2} \)
47 \( 1 + 6.67iT - 47T^{2} \)
53 \( 1 + 10.4iT - 53T^{2} \)
59 \( 1 + 10.7T + 59T^{2} \)
61 \( 1 + 14.4T + 61T^{2} \)
67 \( 1 + 7.81iT - 67T^{2} \)
71 \( 1 - 4.48T + 71T^{2} \)
73 \( 1 - 4.96iT - 73T^{2} \)
79 \( 1 + 2.38T + 79T^{2} \)
83 \( 1 + 14.0iT - 83T^{2} \)
89 \( 1 - 1.63T + 89T^{2} \)
97 \( 1 + 9.32iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.616618635124189406701511058708, −7.88701510874141454017817595045, −6.99181270364461675739222540088, −6.21412767776938773074534029443, −5.13933422717018452734159081367, −4.40334797229183089283781543452, −3.90793296450129930832815466672, −3.25252600819871416931193780252, −1.68083076106882469784198718801, −0.03333993842817919259779111983, 1.43645747214057803097770483776, 2.53817237748939651516678700156, 2.73411741217272101909417238836, 4.45647266755760237515823561469, 5.45787165003908326172696923250, 6.13309846109282705300952856754, 6.59019743502478560804067157147, 7.65981540849304234871004620718, 8.075713882577139782989426050700, 8.953113208968614624873857441576

Graph of the $Z$-function along the critical line