L(s) = 1 | + 2.67i·3-s − 4.67i·7-s − 4.14·9-s − 0.672·11-s + 1.14i·13-s + 3.52i·17-s − 5.52·19-s + 12.4·21-s + 3.81i·23-s − 3.05i·27-s + 29-s − 1.52·31-s − 1.79i·33-s + 7.16i·37-s − 3.05·39-s + ⋯ |
L(s) = 1 | + 1.54i·3-s − 1.76i·7-s − 1.38·9-s − 0.202·11-s + 0.317i·13-s + 0.855i·17-s − 1.26·19-s + 2.72·21-s + 0.795i·23-s − 0.588i·27-s + 0.185·29-s − 0.274·31-s − 0.313i·33-s + 1.17i·37-s − 0.489·39-s + ⋯ |
Λ(s)=(=(2900s/2ΓC(s)L(s)(−0.447+0.894i)Λ(2−s)
Λ(s)=(=(2900s/2ΓC(s+1/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2900
= 22⋅52⋅29
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
23.1566 |
Root analytic conductor: |
4.81213 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2900(349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2900, ( :1/2), −0.447+0.894i)
|
Particular Values
L(1) |
≈ |
0.1098266048 |
L(21) |
≈ |
0.1098266048 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 29 | 1−T |
good | 3 | 1−2.67iT−3T2 |
| 7 | 1+4.67iT−7T2 |
| 11 | 1+0.672T+11T2 |
| 13 | 1−1.14iT−13T2 |
| 17 | 1−3.52iT−17T2 |
| 19 | 1+5.52T+19T2 |
| 23 | 1−3.81iT−23T2 |
| 31 | 1+1.52T+31T2 |
| 37 | 1−7.16iT−37T2 |
| 41 | 1−2.85T+41T2 |
| 43 | 1+8.96iT−43T2 |
| 47 | 1+6.67iT−47T2 |
| 53 | 1+10.4iT−53T2 |
| 59 | 1+10.7T+59T2 |
| 61 | 1+14.4T+61T2 |
| 67 | 1+7.81iT−67T2 |
| 71 | 1−4.48T+71T2 |
| 73 | 1−4.96iT−73T2 |
| 79 | 1+2.38T+79T2 |
| 83 | 1+14.0iT−83T2 |
| 89 | 1−1.63T+89T2 |
| 97 | 1+9.32iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.616618635124189406701511058708, −7.88701510874141454017817595045, −6.99181270364461675739222540088, −6.21412767776938773074534029443, −5.13933422717018452734159081367, −4.40334797229183089283781543452, −3.90793296450129930832815466672, −3.25252600819871416931193780252, −1.68083076106882469784198718801, −0.03333993842817919259779111983,
1.43645747214057803097770483776, 2.53817237748939651516678700156, 2.73411741217272101909417238836, 4.45647266755760237515823561469, 5.45787165003908326172696923250, 6.13309846109282705300952856754, 6.59019743502478560804067157147, 7.65981540849304234871004620718, 8.075713882577139782989426050700, 8.953113208968614624873857441576