L(s) = 1 | + 1.35i·3-s + 0.648i·7-s + 1.17·9-s + 3.35·11-s + 4.17i·13-s − 4.82i·17-s − 6.82·19-s − 0.876·21-s + 5.52i·23-s + 5.64i·27-s + 29-s − 2.82·31-s + 4.53i·33-s + 10.2i·37-s − 5.64·39-s + ⋯ |
L(s) = 1 | + 0.780i·3-s + 0.244i·7-s + 0.390·9-s + 1.01·11-s + 1.15i·13-s − 1.16i·17-s − 1.56·19-s − 0.191·21-s + 1.15i·23-s + 1.08i·27-s + 0.185·29-s − 0.506·31-s + 0.788i·33-s + 1.68i·37-s − 0.903·39-s + ⋯ |
Λ(s)=(=(2900s/2ΓC(s)L(s)(−0.447−0.894i)Λ(2−s)
Λ(s)=(=(2900s/2ΓC(s+1/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2900
= 22⋅52⋅29
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
23.1566 |
Root analytic conductor: |
4.81213 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2900(349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2900, ( :1/2), −0.447−0.894i)
|
Particular Values
L(1) |
≈ |
1.743306986 |
L(21) |
≈ |
1.743306986 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 29 | 1−T |
good | 3 | 1−1.35iT−3T2 |
| 7 | 1−0.648iT−7T2 |
| 11 | 1−3.35T+11T2 |
| 13 | 1−4.17iT−13T2 |
| 17 | 1+4.82iT−17T2 |
| 19 | 1+6.82T+19T2 |
| 23 | 1−5.52iT−23T2 |
| 31 | 1+2.82T+31T2 |
| 37 | 1−10.2iT−37T2 |
| 41 | 1−8.17T+41T2 |
| 43 | 1+5.69iT−43T2 |
| 47 | 1−2.64iT−47T2 |
| 53 | 1+2.87iT−53T2 |
| 59 | 1−13.2T+59T2 |
| 61 | 1+1.12T+61T2 |
| 67 | 1+1.52iT−67T2 |
| 71 | 1+8.87T+71T2 |
| 73 | 1−9.69iT−73T2 |
| 79 | 1+8.99T+79T2 |
| 83 | 1−1.94iT−83T2 |
| 89 | 1+17.0T+89T2 |
| 97 | 1−13.3iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.063119354427458163875541908440, −8.581473287291675528289791392970, −7.29974177682906855388850052778, −6.82982004722803072495128277070, −5.95029195213226924727302777228, −4.95118582881574650965086419213, −4.24674496459150001812706178548, −3.70056172585261031554346655812, −2.43302752090254754718850329228, −1.35396691623909700858900142909,
0.58194129699924828455124599468, 1.66416224237692529743728135055, 2.57693226430316908732589183835, 3.94532081001897662350759861983, 4.33055597049063262116611691155, 5.74895585758420298926867317282, 6.28492155182959352457335551343, 7.00894716050268245326537207728, 7.72371142317507397484942783856, 8.468520773843406042105779271291