Properties

Label 2-2900-5.4-c1-0-10
Degree $2$
Conductor $2900$
Sign $-0.447 - 0.894i$
Analytic cond. $23.1566$
Root an. cond. $4.81213$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.35i·3-s + 0.648i·7-s + 1.17·9-s + 3.35·11-s + 4.17i·13-s − 4.82i·17-s − 6.82·19-s − 0.876·21-s + 5.52i·23-s + 5.64i·27-s + 29-s − 2.82·31-s + 4.53i·33-s + 10.2i·37-s − 5.64·39-s + ⋯
L(s)  = 1  + 0.780i·3-s + 0.244i·7-s + 0.390·9-s + 1.01·11-s + 1.15i·13-s − 1.16i·17-s − 1.56·19-s − 0.191·21-s + 1.15i·23-s + 1.08i·27-s + 0.185·29-s − 0.506·31-s + 0.788i·33-s + 1.68i·37-s − 0.903·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2900\)    =    \(2^{2} \cdot 5^{2} \cdot 29\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(23.1566\)
Root analytic conductor: \(4.81213\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2900} (349, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2900,\ (\ :1/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.743306986\)
\(L(\frac12)\) \(\approx\) \(1.743306986\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
29 \( 1 - T \)
good3 \( 1 - 1.35iT - 3T^{2} \)
7 \( 1 - 0.648iT - 7T^{2} \)
11 \( 1 - 3.35T + 11T^{2} \)
13 \( 1 - 4.17iT - 13T^{2} \)
17 \( 1 + 4.82iT - 17T^{2} \)
19 \( 1 + 6.82T + 19T^{2} \)
23 \( 1 - 5.52iT - 23T^{2} \)
31 \( 1 + 2.82T + 31T^{2} \)
37 \( 1 - 10.2iT - 37T^{2} \)
41 \( 1 - 8.17T + 41T^{2} \)
43 \( 1 + 5.69iT - 43T^{2} \)
47 \( 1 - 2.64iT - 47T^{2} \)
53 \( 1 + 2.87iT - 53T^{2} \)
59 \( 1 - 13.2T + 59T^{2} \)
61 \( 1 + 1.12T + 61T^{2} \)
67 \( 1 + 1.52iT - 67T^{2} \)
71 \( 1 + 8.87T + 71T^{2} \)
73 \( 1 - 9.69iT - 73T^{2} \)
79 \( 1 + 8.99T + 79T^{2} \)
83 \( 1 - 1.94iT - 83T^{2} \)
89 \( 1 + 17.0T + 89T^{2} \)
97 \( 1 - 13.3iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.063119354427458163875541908440, −8.581473287291675528289791392970, −7.29974177682906855388850052778, −6.82982004722803072495128277070, −5.95029195213226924727302777228, −4.95118582881574650965086419213, −4.24674496459150001812706178548, −3.70056172585261031554346655812, −2.43302752090254754718850329228, −1.35396691623909700858900142909, 0.58194129699924828455124599468, 1.66416224237692529743728135055, 2.57693226430316908732589183835, 3.94532081001897662350759861983, 4.33055597049063262116611691155, 5.74895585758420298926867317282, 6.28492155182959352457335551343, 7.00894716050268245326537207728, 7.72371142317507397484942783856, 8.468520773843406042105779271291

Graph of the $Z$-function along the critical line