L(s) = 1 | + (0.900 + 0.433i)2-s + (−1.12 + 1.40i)3-s + (0.623 + 0.781i)4-s + (−1.62 + 0.781i)6-s + (1.22 + 0.974i)7-s + (0.222 + 0.974i)8-s + (−0.500 − 2.19i)9-s − 1.80·12-s + (0.678 + 1.40i)14-s + (−0.222 + 0.974i)16-s + (0.499 − 2.19i)18-s + (−2.74 + 0.626i)21-s + (0.376 + 0.781i)23-s + (−1.62 − 0.781i)24-s + (2.02 + 0.974i)27-s + 1.56i·28-s + ⋯ |
L(s) = 1 | + (0.900 + 0.433i)2-s + (−1.12 + 1.40i)3-s + (0.623 + 0.781i)4-s + (−1.62 + 0.781i)6-s + (1.22 + 0.974i)7-s + (0.222 + 0.974i)8-s + (−0.500 − 2.19i)9-s − 1.80·12-s + (0.678 + 1.40i)14-s + (−0.222 + 0.974i)16-s + (0.499 − 2.19i)18-s + (−2.74 + 0.626i)21-s + (0.376 + 0.781i)23-s + (−1.62 − 0.781i)24-s + (2.02 + 0.974i)27-s + 1.56i·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 - 0.230i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 - 0.230i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.623182743\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.623182743\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.900 - 0.433i)T \) |
| 5 | \( 1 \) |
| 29 | \( 1 + (0.623 - 0.781i)T \) |
good | 3 | \( 1 + (1.12 - 1.40i)T + (-0.222 - 0.974i)T^{2} \) |
| 7 | \( 1 + (-1.22 - 0.974i)T + (0.222 + 0.974i)T^{2} \) |
| 11 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 13 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 23 | \( 1 + (-0.376 - 0.781i)T + (-0.623 + 0.781i)T^{2} \) |
| 31 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 37 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 41 | \( 1 + 1.94iT - T^{2} \) |
| 43 | \( 1 + (0.400 - 0.193i)T + (0.623 - 0.781i)T^{2} \) |
| 47 | \( 1 + (-0.277 + 1.21i)T + (-0.900 - 0.433i)T^{2} \) |
| 53 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 67 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 71 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 79 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 83 | \( 1 + (-1.52 + 1.21i)T + (0.222 - 0.974i)T^{2} \) |
| 89 | \( 1 + (-0.678 + 1.40i)T + (-0.623 - 0.781i)T^{2} \) |
| 97 | \( 1 + (0.222 - 0.974i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.130743761978035103556613336015, −8.704224957938148303509089600396, −7.66319991519794206231580588611, −6.75483175062301706517001354829, −5.75068409712510847900123452045, −5.37951825088889665920869735804, −4.88348483544199306205855004570, −4.05782444279145603161463863814, −3.26715495632590610333719351009, −1.93106531736530508530601325435,
0.928209148384403253963107862404, 1.64374143025451386380059229811, 2.62526429886424828190446742306, 4.10014169725682306978652134229, 4.82715301405186884734537690833, 5.44780023103421837641255296844, 6.36706580166310990271399517388, 6.82851532716987329687244665222, 7.70488115705777218801941125574, 8.077005906528276706823393818767