L(s) = 1 | + (0.433 + 0.900i)2-s + (1.62 + 2.03i)3-s + (−0.623 + 0.781i)4-s + (2.22 − 0.223i)5-s + (−1.12 + 2.34i)6-s + (−3.98 − 0.448i)7-s + (−0.974 − 0.222i)8-s + (−0.834 + 3.65i)9-s + (1.16 + 1.90i)10-s + (0.227 + 0.142i)11-s − 2.59·12-s + (3.20 + 2.01i)13-s + (−1.32 − 3.78i)14-s + (4.05 + 4.15i)15-s + (−0.222 − 0.974i)16-s − 4.78i·17-s + ⋯ |
L(s) = 1 | + (0.306 + 0.637i)2-s + (0.935 + 1.17i)3-s + (−0.311 + 0.390i)4-s + (0.994 − 0.100i)5-s + (−0.460 + 0.955i)6-s + (−1.50 − 0.169i)7-s + (−0.344 − 0.0786i)8-s + (−0.278 + 1.21i)9-s + (0.369 + 0.603i)10-s + (0.0685 + 0.0430i)11-s − 0.750·12-s + (0.889 + 0.558i)13-s + (−0.353 − 1.01i)14-s + (1.04 + 1.07i)15-s + (−0.0556 − 0.243i)16-s − 1.16i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.324 - 0.945i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.324 - 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.13767 + 1.59303i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.13767 + 1.59303i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.433 - 0.900i)T \) |
| 5 | \( 1 + (-2.22 + 0.223i)T \) |
| 29 | \( 1 + (0.888 - 5.31i)T \) |
good | 3 | \( 1 + (-1.62 - 2.03i)T + (-0.667 + 2.92i)T^{2} \) |
| 7 | \( 1 + (3.98 + 0.448i)T + (6.82 + 1.55i)T^{2} \) |
| 11 | \( 1 + (-0.227 - 0.142i)T + (4.77 + 9.91i)T^{2} \) |
| 13 | \( 1 + (-3.20 - 2.01i)T + (5.64 + 11.7i)T^{2} \) |
| 17 | \( 1 + 4.78iT - 17T^{2} \) |
| 19 | \( 1 + (-1.20 + 0.136i)T + (18.5 - 4.22i)T^{2} \) |
| 23 | \( 1 + (2.15 + 6.17i)T + (-17.9 + 14.3i)T^{2} \) |
| 31 | \( 1 + (1.94 - 5.57i)T + (-24.2 - 19.3i)T^{2} \) |
| 37 | \( 1 + (-1.89 + 8.29i)T + (-33.3 - 16.0i)T^{2} \) |
| 41 | \( 1 + (-4.83 - 4.83i)T + 41iT^{2} \) |
| 43 | \( 1 + (6.44 + 3.10i)T + (26.8 + 33.6i)T^{2} \) |
| 47 | \( 1 + (0.460 + 2.01i)T + (-42.3 + 20.3i)T^{2} \) |
| 53 | \( 1 + (-2.95 - 1.03i)T + (41.4 + 33.0i)T^{2} \) |
| 59 | \( 1 + 6.00iT - 59T^{2} \) |
| 61 | \( 1 + (13.6 + 1.53i)T + (59.4 + 13.5i)T^{2} \) |
| 67 | \( 1 + (-9.25 + 5.81i)T + (29.0 - 60.3i)T^{2} \) |
| 71 | \( 1 + (9.50 - 2.17i)T + (63.9 - 30.8i)T^{2} \) |
| 73 | \( 1 + (4.68 - 9.73i)T + (-45.5 - 57.0i)T^{2} \) |
| 79 | \( 1 + (0.719 - 0.452i)T + (34.2 - 71.1i)T^{2} \) |
| 83 | \( 1 + (8.11 - 0.914i)T + (80.9 - 18.4i)T^{2} \) |
| 89 | \( 1 + (-14.8 - 5.20i)T + (69.5 + 55.4i)T^{2} \) |
| 97 | \( 1 + (0.902 - 1.13i)T + (-21.5 - 94.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.44670288763689489554966330279, −10.75804005337850730696575036344, −9.854144525871145474349624299560, −9.230204844416396053390674655514, −8.668415913435687271993694880304, −7.01099840909137639370784569880, −6.15609275007634326174053959535, −4.91566339294908250240787526623, −3.72693883176196754876689810260, −2.79345064939460744449082014779,
1.50804816922740720840803093296, 2.73594379568690953033297583012, 3.62208005670547721154065973489, 5.90061006061066399931260207622, 6.31420754755045626331737806378, 7.68209187413780908552657632285, 8.824530334589006504961832883387, 9.624231171081991758395770482248, 10.41686940476473388640620439768, 11.81101568773127869569739029265