L(s) = 1 | + (0.781 + 0.623i)2-s + (0.677 − 2.96i)3-s + (0.222 + 0.974i)4-s + (−1.61 − 1.54i)5-s + (2.37 − 1.89i)6-s + (0.822 − 0.516i)7-s + (−0.433 + 0.900i)8-s + (−5.64 − 2.71i)9-s + (−0.294 − 2.21i)10-s + (1.75 + 0.613i)11-s + 3.04·12-s + (−0.582 − 0.203i)13-s + (0.965 + 0.108i)14-s + (−5.68 + 3.73i)15-s + (−0.900 + 0.433i)16-s − 1.38i·17-s + ⋯ |
L(s) = 1 | + (0.552 + 0.440i)2-s + (0.390 − 1.71i)3-s + (0.111 + 0.487i)4-s + (−0.721 − 0.692i)5-s + (0.971 − 0.774i)6-s + (0.310 − 0.195i)7-s + (−0.153 + 0.318i)8-s + (−1.88 − 0.905i)9-s + (−0.0932 − 0.700i)10-s + (0.528 + 0.184i)11-s + 0.878·12-s + (−0.161 − 0.0565i)13-s + (0.258 + 0.0290i)14-s + (−1.46 + 0.964i)15-s + (−0.225 + 0.108i)16-s − 0.335i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.151 + 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.151 + 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.30586 - 1.12097i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.30586 - 1.12097i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.781 - 0.623i)T \) |
| 5 | \( 1 + (1.61 + 1.54i)T \) |
| 29 | \( 1 + (-4.05 + 3.54i)T \) |
good | 3 | \( 1 + (-0.677 + 2.96i)T + (-2.70 - 1.30i)T^{2} \) |
| 7 | \( 1 + (-0.822 + 0.516i)T + (3.03 - 6.30i)T^{2} \) |
| 11 | \( 1 + (-1.75 - 0.613i)T + (8.60 + 6.85i)T^{2} \) |
| 13 | \( 1 + (0.582 + 0.203i)T + (10.1 + 8.10i)T^{2} \) |
| 17 | \( 1 + 1.38iT - 17T^{2} \) |
| 19 | \( 1 + (-0.0458 - 0.0287i)T + (8.24 + 17.1i)T^{2} \) |
| 23 | \( 1 + (-8.54 - 0.962i)T + (22.4 + 5.11i)T^{2} \) |
| 31 | \( 1 + (8.96 - 1.01i)T + (30.2 - 6.89i)T^{2} \) |
| 37 | \( 1 + (-8.02 - 3.86i)T + (23.0 + 28.9i)T^{2} \) |
| 41 | \( 1 + (-0.177 + 0.177i)T - 41iT^{2} \) |
| 43 | \( 1 + (-3.13 - 3.93i)T + (-9.56 + 41.9i)T^{2} \) |
| 47 | \( 1 + (-4.95 + 2.38i)T + (29.3 - 36.7i)T^{2} \) |
| 53 | \( 1 + (-0.703 - 6.24i)T + (-51.6 + 11.7i)T^{2} \) |
| 59 | \( 1 - 1.11iT - 59T^{2} \) |
| 61 | \( 1 + (-11.9 + 7.49i)T + (26.4 - 54.9i)T^{2} \) |
| 67 | \( 1 + (8.32 - 2.91i)T + (52.3 - 41.7i)T^{2} \) |
| 71 | \( 1 + (-1.51 - 3.14i)T + (-44.2 + 55.5i)T^{2} \) |
| 73 | \( 1 + (9.85 - 7.85i)T + (16.2 - 71.1i)T^{2} \) |
| 79 | \( 1 + (14.1 - 4.93i)T + (61.7 - 49.2i)T^{2} \) |
| 83 | \( 1 + (13.9 + 8.77i)T + (36.0 + 74.7i)T^{2} \) |
| 89 | \( 1 + (1.71 + 15.2i)T + (-86.7 + 19.8i)T^{2} \) |
| 97 | \( 1 + (0.152 + 0.668i)T + (-87.3 + 42.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.84065453738579916661360962175, −11.28289512435776731605278818943, −9.183716438667017545877243550540, −8.383082879817637832191260853588, −7.46713654426480634718292602989, −6.99299734953483796365321277017, −5.72093241051967826470378547368, −4.41756290365620772980307752348, −2.90598315605477906030659328082, −1.19107229925133597453551004360,
2.77540819013441701179185260224, 3.71014623111423485761768851451, 4.52280438316804356548551475123, 5.59487150473104519540817807293, 7.10070725988148749400544578352, 8.554204003552207153250534822978, 9.310876650836762365309662205212, 10.40446289846605595447090092810, 11.01569688087611829266980900229, 11.61526075823210379535171160706