Properties

Label 2-290-1.1-c1-0-9
Degree $2$
Conductor $290$
Sign $1$
Analytic cond. $2.31566$
Root an. cond. $1.52172$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3.14·3-s + 4-s − 5-s + 3.14·6-s − 3.89·7-s + 8-s + 6.89·9-s − 10-s − 4.29·11-s + 3.14·12-s + 4.34·13-s − 3.89·14-s − 3.14·15-s + 16-s + 1.60·17-s + 6.89·18-s − 1.20·19-s − 20-s − 12.2·21-s − 4.29·22-s − 8.34·23-s + 3.14·24-s + 25-s + 4.34·26-s + 12.2·27-s − 3.89·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.81·3-s + 0.5·4-s − 0.447·5-s + 1.28·6-s − 1.47·7-s + 0.353·8-s + 2.29·9-s − 0.316·10-s − 1.29·11-s + 0.907·12-s + 1.20·13-s − 1.04·14-s − 0.812·15-s + 0.250·16-s + 0.388·17-s + 1.62·18-s − 0.275·19-s − 0.223·20-s − 2.67·21-s − 0.914·22-s − 1.74·23-s + 0.641·24-s + 0.200·25-s + 0.852·26-s + 2.35·27-s − 0.735·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(290\)    =    \(2 \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(2.31566\)
Root analytic conductor: \(1.52172\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 290,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.693506983\)
\(L(\frac12)\) \(\approx\) \(2.693506983\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
29 \( 1 + T \)
good3 \( 1 - 3.14T + 3T^{2} \)
7 \( 1 + 3.89T + 7T^{2} \)
11 \( 1 + 4.29T + 11T^{2} \)
13 \( 1 - 4.34T + 13T^{2} \)
17 \( 1 - 1.60T + 17T^{2} \)
19 \( 1 + 1.20T + 19T^{2} \)
23 \( 1 + 8.34T + 23T^{2} \)
31 \( 1 + 2.39T + 31T^{2} \)
37 \( 1 + 9.78T + 37T^{2} \)
41 \( 1 - 5.78T + 41T^{2} \)
43 \( 1 - 3.60T + 43T^{2} \)
47 \( 1 - 8.58T + 47T^{2} \)
53 \( 1 - 4.80T + 53T^{2} \)
59 \( 1 + 4.05T + 59T^{2} \)
61 \( 1 - 11.4T + 61T^{2} \)
67 \( 1 - 9.08T + 67T^{2} \)
71 \( 1 + 12T + 71T^{2} \)
73 \( 1 + 2.39T + 73T^{2} \)
79 \( 1 - 7.55T + 79T^{2} \)
83 \( 1 - 2.79T + 83T^{2} \)
89 \( 1 + 4.29T + 89T^{2} \)
97 \( 1 + 0.348T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.30944438702545142400179855434, −10.63558349084430931817762020080, −9.903128644917207584138040105758, −8.807995506409440880056456620375, −7.965254244668962494130985274267, −7.08820154662815520981181126867, −5.83393683358686715852853527128, −3.99536896728196627920557218645, −3.40347079805317736636773815143, −2.35928655279984995783914105728, 2.35928655279984995783914105728, 3.40347079805317736636773815143, 3.99536896728196627920557218645, 5.83393683358686715852853527128, 7.08820154662815520981181126867, 7.965254244668962494130985274267, 8.807995506409440880056456620375, 9.903128644917207584138040105758, 10.63558349084430931817762020080, 12.30944438702545142400179855434

Graph of the $Z$-function along the critical line