Properties

Label 2-290-1.1-c1-0-5
Degree $2$
Conductor $290$
Sign $1$
Analytic cond. $2.31566$
Root an. cond. $1.52172$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.30·3-s + 4-s + 5-s − 2.30·6-s + 3.30·7-s − 8-s + 2.30·9-s − 10-s − 2.60·11-s + 2.30·12-s − 2.30·13-s − 3.30·14-s + 2.30·15-s + 16-s + 1.30·17-s − 2.30·18-s − 0.605·19-s + 20-s + 7.60·21-s + 2.60·22-s − 6.90·23-s − 2.30·24-s + 25-s + 2.30·26-s − 1.60·27-s + 3.30·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.32·3-s + 0.5·4-s + 0.447·5-s − 0.940·6-s + 1.24·7-s − 0.353·8-s + 0.767·9-s − 0.316·10-s − 0.785·11-s + 0.664·12-s − 0.638·13-s − 0.882·14-s + 0.594·15-s + 0.250·16-s + 0.315·17-s − 0.542·18-s − 0.138·19-s + 0.223·20-s + 1.65·21-s + 0.555·22-s − 1.44·23-s − 0.470·24-s + 0.200·25-s + 0.451·26-s − 0.308·27-s + 0.624·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(290\)    =    \(2 \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(2.31566\)
Root analytic conductor: \(1.52172\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 290,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.570222813\)
\(L(\frac12)\) \(\approx\) \(1.570222813\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 - T \)
29 \( 1 + T \)
good3 \( 1 - 2.30T + 3T^{2} \)
7 \( 1 - 3.30T + 7T^{2} \)
11 \( 1 + 2.60T + 11T^{2} \)
13 \( 1 + 2.30T + 13T^{2} \)
17 \( 1 - 1.30T + 17T^{2} \)
19 \( 1 + 0.605T + 19T^{2} \)
23 \( 1 + 6.90T + 23T^{2} \)
31 \( 1 - 6.69T + 31T^{2} \)
37 \( 1 + 0.605T + 37T^{2} \)
41 \( 1 - 8.60T + 41T^{2} \)
43 \( 1 - 3.30T + 43T^{2} \)
47 \( 1 - 5.21T + 47T^{2} \)
53 \( 1 + 13.3T + 53T^{2} \)
59 \( 1 + 7.69T + 59T^{2} \)
61 \( 1 - 0.302T + 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 + 5.21T + 71T^{2} \)
73 \( 1 + 13.1T + 73T^{2} \)
79 \( 1 - 8.90T + 79T^{2} \)
83 \( 1 + 13.8T + 83T^{2} \)
89 \( 1 - 7.81T + 89T^{2} \)
97 \( 1 + 16.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.67577167906280000360073252230, −10.57255252512302849701277700808, −9.769744200988371500358812565424, −8.855771223927276463027970058674, −7.945360191820628535753467075691, −7.59944135420357923935951520678, −5.89742003638108242312856480455, −4.50753762260778242446025361669, −2.80692499643066464749320708844, −1.85760263215716619713560207955, 1.85760263215716619713560207955, 2.80692499643066464749320708844, 4.50753762260778242446025361669, 5.89742003638108242312856480455, 7.59944135420357923935951520678, 7.945360191820628535753467075691, 8.855771223927276463027970058674, 9.769744200988371500358812565424, 10.57255252512302849701277700808, 11.67577167906280000360073252230

Graph of the $Z$-function along the critical line