L(s) = 1 | − 2-s − 1.30·3-s + 4-s − 5-s + 1.30·6-s + 4.30·7-s − 8-s − 1.30·9-s + 10-s − 4.60·11-s − 1.30·12-s + 2.69·13-s − 4.30·14-s + 1.30·15-s + 16-s + 6.90·17-s + 1.30·18-s + 6.60·19-s − 20-s − 5.60·21-s + 4.60·22-s + 5.30·23-s + 1.30·24-s + 25-s − 2.69·26-s + 5.60·27-s + 4.30·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.752·3-s + 0.5·4-s − 0.447·5-s + 0.531·6-s + 1.62·7-s − 0.353·8-s − 0.434·9-s + 0.316·10-s − 1.38·11-s − 0.376·12-s + 0.748·13-s − 1.14·14-s + 0.336·15-s + 0.250·16-s + 1.67·17-s + 0.307·18-s + 1.51·19-s − 0.223·20-s − 1.22·21-s + 0.981·22-s + 1.10·23-s + 0.265·24-s + 0.200·25-s − 0.528·26-s + 1.07·27-s + 0.813·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7767842965\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7767842965\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 5 | \( 1 + T \) |
| 29 | \( 1 - T \) |
good | 3 | \( 1 + 1.30T + 3T^{2} \) |
| 7 | \( 1 - 4.30T + 7T^{2} \) |
| 11 | \( 1 + 4.60T + 11T^{2} \) |
| 13 | \( 1 - 2.69T + 13T^{2} \) |
| 17 | \( 1 - 6.90T + 17T^{2} \) |
| 19 | \( 1 - 6.60T + 19T^{2} \) |
| 23 | \( 1 - 5.30T + 23T^{2} \) |
| 31 | \( 1 - 2.90T + 31T^{2} \) |
| 37 | \( 1 + 11.8T + 37T^{2} \) |
| 41 | \( 1 + 1.39T + 41T^{2} \) |
| 43 | \( 1 + 0.302T + 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 6.90T + 53T^{2} \) |
| 59 | \( 1 - 9.90T + 59T^{2} \) |
| 61 | \( 1 + 13.9T + 61T^{2} \) |
| 67 | \( 1 - 5.21T + 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + 15.5T + 73T^{2} \) |
| 79 | \( 1 - 5.90T + 79T^{2} \) |
| 83 | \( 1 + 1.39T + 83T^{2} \) |
| 89 | \( 1 + 7.39T + 89T^{2} \) |
| 97 | \( 1 - 11.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.64448853237840978152738087403, −10.87642575347050855324411838616, −10.24020819636558820818875281638, −8.689362052218756979442645513614, −7.995271560601890934578164778827, −7.25043011485310189304278098122, −5.53926944552609927239784005951, −5.09767152865771135713722114004, −3.10361514593794498727934882345, −1.13630281923608134961414266624,
1.13630281923608134961414266624, 3.10361514593794498727934882345, 5.09767152865771135713722114004, 5.53926944552609927239784005951, 7.25043011485310189304278098122, 7.995271560601890934578164778827, 8.689362052218756979442645513614, 10.24020819636558820818875281638, 10.87642575347050855324411838616, 11.64448853237840978152738087403