Properties

Label 2-290-1.1-c1-0-0
Degree $2$
Conductor $290$
Sign $1$
Analytic cond. $2.31566$
Root an. cond. $1.52172$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 1.30·3-s + 4-s − 5-s + 1.30·6-s + 4.30·7-s − 8-s − 1.30·9-s + 10-s − 4.60·11-s − 1.30·12-s + 2.69·13-s − 4.30·14-s + 1.30·15-s + 16-s + 6.90·17-s + 1.30·18-s + 6.60·19-s − 20-s − 5.60·21-s + 4.60·22-s + 5.30·23-s + 1.30·24-s + 25-s − 2.69·26-s + 5.60·27-s + 4.30·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.752·3-s + 0.5·4-s − 0.447·5-s + 0.531·6-s + 1.62·7-s − 0.353·8-s − 0.434·9-s + 0.316·10-s − 1.38·11-s − 0.376·12-s + 0.748·13-s − 1.14·14-s + 0.336·15-s + 0.250·16-s + 1.67·17-s + 0.307·18-s + 1.51·19-s − 0.223·20-s − 1.22·21-s + 0.981·22-s + 1.10·23-s + 0.265·24-s + 0.200·25-s − 0.528·26-s + 1.07·27-s + 0.813·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(290\)    =    \(2 \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(2.31566\)
Root analytic conductor: \(1.52172\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 290,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7767842965\)
\(L(\frac12)\) \(\approx\) \(0.7767842965\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 + T \)
29 \( 1 - T \)
good3 \( 1 + 1.30T + 3T^{2} \)
7 \( 1 - 4.30T + 7T^{2} \)
11 \( 1 + 4.60T + 11T^{2} \)
13 \( 1 - 2.69T + 13T^{2} \)
17 \( 1 - 6.90T + 17T^{2} \)
19 \( 1 - 6.60T + 19T^{2} \)
23 \( 1 - 5.30T + 23T^{2} \)
31 \( 1 - 2.90T + 31T^{2} \)
37 \( 1 + 11.8T + 37T^{2} \)
41 \( 1 + 1.39T + 41T^{2} \)
43 \( 1 + 0.302T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 6.90T + 53T^{2} \)
59 \( 1 - 9.90T + 59T^{2} \)
61 \( 1 + 13.9T + 61T^{2} \)
67 \( 1 - 5.21T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 15.5T + 73T^{2} \)
79 \( 1 - 5.90T + 79T^{2} \)
83 \( 1 + 1.39T + 83T^{2} \)
89 \( 1 + 7.39T + 89T^{2} \)
97 \( 1 - 11.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.64448853237840978152738087403, −10.87642575347050855324411838616, −10.24020819636558820818875281638, −8.689362052218756979442645513614, −7.995271560601890934578164778827, −7.25043011485310189304278098122, −5.53926944552609927239784005951, −5.09767152865771135713722114004, −3.10361514593794498727934882345, −1.13630281923608134961414266624, 1.13630281923608134961414266624, 3.10361514593794498727934882345, 5.09767152865771135713722114004, 5.53926944552609927239784005951, 7.25043011485310189304278098122, 7.995271560601890934578164778827, 8.689362052218756979442645513614, 10.24020819636558820818875281638, 10.87642575347050855324411838616, 11.64448853237840978152738087403

Graph of the $Z$-function along the critical line