L(s) = 1 | + (1.21 − 0.965i)2-s + (−2.86 + 0.653i)3-s + (0.0890 − 0.390i)4-s + (0.283 + 0.355i)5-s + (−2.83 + 3.55i)6-s + (−0.759 − 3.32i)7-s + (1.07 + 2.23i)8-s + (5.05 − 2.43i)9-s + (0.686 + 0.156i)10-s + (−0.635 + 1.31i)11-s + 1.17i·12-s + (−2.78 − 1.33i)13-s + (−4.13 − 3.29i)14-s + (−1.04 − 0.831i)15-s + (4.18 + 2.01i)16-s + 2.82i·17-s + ⋯ |
L(s) = 1 | + (0.856 − 0.683i)2-s + (−1.65 + 0.377i)3-s + (0.0445 − 0.195i)4-s + (0.126 + 0.158i)5-s + (−1.15 + 1.45i)6-s + (−0.287 − 1.25i)7-s + (0.380 + 0.789i)8-s + (1.68 − 0.811i)9-s + (0.217 + 0.0495i)10-s + (−0.191 + 0.397i)11-s + 0.339i·12-s + (−0.771 − 0.371i)13-s + (−1.10 − 0.881i)14-s + (−0.269 − 0.214i)15-s + (1.04 + 0.503i)16-s + 0.684i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 + 0.414i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.910 + 0.414i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.668586 - 0.145126i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.668586 - 0.145126i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 + (3.83 - 3.77i)T \) |
good | 2 | \( 1 + (-1.21 + 0.965i)T + (0.445 - 1.94i)T^{2} \) |
| 3 | \( 1 + (2.86 - 0.653i)T + (2.70 - 1.30i)T^{2} \) |
| 5 | \( 1 + (-0.283 - 0.355i)T + (-1.11 + 4.87i)T^{2} \) |
| 7 | \( 1 + (0.759 + 3.32i)T + (-6.30 + 3.03i)T^{2} \) |
| 11 | \( 1 + (0.635 - 1.31i)T + (-6.85 - 8.60i)T^{2} \) |
| 13 | \( 1 + (2.78 + 1.33i)T + (8.10 + 10.1i)T^{2} \) |
| 17 | \( 1 - 2.82iT - 17T^{2} \) |
| 19 | \( 1 + (-2.23 - 0.510i)T + (17.1 + 8.24i)T^{2} \) |
| 23 | \( 1 + (-0.333 + 0.417i)T + (-5.11 - 22.4i)T^{2} \) |
| 31 | \( 1 + (2.80 - 2.23i)T + (6.89 - 30.2i)T^{2} \) |
| 37 | \( 1 + (3.08 + 6.41i)T + (-23.0 + 28.9i)T^{2} \) |
| 41 | \( 1 + 4.43iT - 41T^{2} \) |
| 43 | \( 1 + (-3.22 - 2.57i)T + (9.56 + 41.9i)T^{2} \) |
| 47 | \( 1 + (-0.0778 + 0.161i)T + (-29.3 - 36.7i)T^{2} \) |
| 53 | \( 1 + (-1.92 - 2.41i)T + (-11.7 + 51.6i)T^{2} \) |
| 59 | \( 1 - 13.2T + 59T^{2} \) |
| 61 | \( 1 + (-1.84 + 0.420i)T + (54.9 - 26.4i)T^{2} \) |
| 67 | \( 1 + (10.9 - 5.28i)T + (41.7 - 52.3i)T^{2} \) |
| 71 | \( 1 + (-4.06 - 1.95i)T + (44.2 + 55.5i)T^{2} \) |
| 73 | \( 1 + (-6.47 - 5.15i)T + (16.2 + 71.1i)T^{2} \) |
| 79 | \( 1 + (6.00 + 12.4i)T + (-49.2 + 61.7i)T^{2} \) |
| 83 | \( 1 + (-0.545 + 2.39i)T + (-74.7 - 36.0i)T^{2} \) |
| 89 | \( 1 + (10.5 - 8.41i)T + (19.8 - 86.7i)T^{2} \) |
| 97 | \( 1 + (-4.58 - 1.04i)T + (87.3 + 42.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.12469549048324073726820248930, −16.21216265700384355528052555231, −14.45458683535821128204224703639, −12.98039160357999460067384584742, −12.16471509821507770596997800696, −10.86229233904019356269750180357, −10.22722885867857454948365047783, −7.18870989812725013803472524124, −5.40093903660652915883022383970, −4.08029133751381065579970008725,
5.08858261477480530779716134548, 5.82135922482034502991718014869, 7.08283534664582326321460632384, 9.660306036899778590060541711702, 11.42024959805681677350971713369, 12.38958063914186608454362589801, 13.42451447167535721349930674859, 15.08368853952578303993357095330, 16.09449698368139733424307811940, 16.96300039835462278141304608818