L(s) = 1 | + (0.655 + 1.25i)2-s + (3.05 − 0.817i)3-s + (−1.14 + 1.64i)4-s + (−0.213 + 0.797i)5-s + (3.02 + 3.28i)6-s + (−2.80 − 0.353i)8-s + (6.05 − 3.49i)9-s + (−1.13 + 0.254i)10-s + (2.73 − 0.732i)11-s + (−2.13 + 5.94i)12-s + (−2.91 + 2.91i)13-s + 2.61i·15-s + (−1.39 − 3.74i)16-s + (2.30 + 1.33i)17-s + (8.34 + 5.29i)18-s + (−0.117 + 0.436i)19-s + ⋯ |
L(s) = 1 | + (0.463 + 0.886i)2-s + (1.76 − 0.472i)3-s + (−0.570 + 0.821i)4-s + (−0.0956 + 0.356i)5-s + (1.23 + 1.34i)6-s + (−0.992 − 0.125i)8-s + (2.01 − 1.16i)9-s + (−0.360 + 0.0806i)10-s + (0.823 − 0.220i)11-s + (−0.617 + 1.71i)12-s + (−0.807 + 0.807i)13-s + 0.673i·15-s + (−0.348 − 0.937i)16-s + (0.558 + 0.322i)17-s + (1.96 + 1.24i)18-s + (−0.0268 + 0.100i)19-s + ⋯ |
Λ(s)=(=(784s/2ΓC(s)L(s)(0.353−0.935i)Λ(2−s)
Λ(s)=(=(784s/2ΓC(s+1/2)L(s)(0.353−0.935i)Λ(1−s)
Degree: |
2 |
Conductor: |
784
= 24⋅72
|
Sign: |
0.353−0.935i
|
Analytic conductor: |
6.26027 |
Root analytic conductor: |
2.50205 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ784(227,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 784, ( :1/2), 0.353−0.935i)
|
Particular Values
L(1) |
≈ |
2.67546+1.84865i |
L(21) |
≈ |
2.67546+1.84865i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.655−1.25i)T |
| 7 | 1 |
good | 3 | 1+(−3.05+0.817i)T+(2.59−1.5i)T2 |
| 5 | 1+(0.213−0.797i)T+(−4.33−2.5i)T2 |
| 11 | 1+(−2.73+0.732i)T+(9.52−5.5i)T2 |
| 13 | 1+(2.91−2.91i)T−13iT2 |
| 17 | 1+(−2.30−1.33i)T+(8.5+14.7i)T2 |
| 19 | 1+(0.117−0.436i)T+(−16.4−9.5i)T2 |
| 23 | 1+(−1.63−2.83i)T+(−11.5+19.9i)T2 |
| 29 | 1+(2.04+2.04i)T+29iT2 |
| 31 | 1+(−1.26+2.18i)T+(−15.5−26.8i)T2 |
| 37 | 1+(2.33+0.625i)T+(32.0+18.5i)T2 |
| 41 | 1+11.9T+41T2 |
| 43 | 1+(3.27+3.27i)T+43iT2 |
| 47 | 1+(4.98+8.63i)T+(−23.5+40.7i)T2 |
| 53 | 1+(0.869+3.24i)T+(−45.8+26.5i)T2 |
| 59 | 1+(1.51+5.66i)T+(−51.0+29.5i)T2 |
| 61 | 1+(6.18+1.65i)T+(52.8+30.5i)T2 |
| 67 | 1+(1.60+5.97i)T+(−58.0+33.5i)T2 |
| 71 | 1−5.14T+71T2 |
| 73 | 1+(3.49−6.05i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−9.72+5.61i)T+(39.5−68.4i)T2 |
| 83 | 1+(−5.39−5.39i)T+83iT2 |
| 89 | 1+(0.528+0.915i)T+(−44.5+77.0i)T2 |
| 97 | 1+13.2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.959995295142695744237655250370, −9.265410171082717120980103462094, −8.594086561658091873414181309560, −7.82080491097770185107232711152, −7.04347347822399029119576374827, −6.53193081847099797735436500200, −4.99233520148897824732551387867, −3.76477725572442056965658152401, −3.24640534802275837395161340569, −1.89795553094800799942012623000,
1.45968889598379672270362460065, 2.74826104313597079713235838812, 3.36039419733889654201168862106, 4.45015878940255851117670135711, 5.09071771826858533021998121776, 6.74873245297663858571339078590, 7.907095614694205127249017836781, 8.712851658564660791617020411179, 9.343784085276534071298941311211, 10.03061245897545332616232580067