Properties

Label 2-28e2-1.1-c5-0-9
Degree $2$
Conductor $784$
Sign $1$
Analytic cond. $125.740$
Root an. cond. $11.2134$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.0·3-s − 79.8·5-s − 141.·9-s − 351.·11-s − 291.·13-s − 804.·15-s − 370.·17-s − 1.50e3·19-s + 425.·23-s + 3.24e3·25-s − 3.87e3·27-s − 7.78e3·29-s + 2.57e3·31-s − 3.54e3·33-s + 739.·37-s − 2.94e3·39-s + 7.02e3·41-s − 1.83e3·43-s + 1.12e4·45-s + 1.53e3·47-s − 3.73e3·51-s − 9.53e3·53-s + 2.80e4·55-s − 1.51e4·57-s + 2.96e4·59-s − 4.65e4·61-s + 2.32e4·65-s + ⋯
L(s)  = 1  + 0.646·3-s − 1.42·5-s − 0.581·9-s − 0.876·11-s − 0.478·13-s − 0.923·15-s − 0.310·17-s − 0.956·19-s + 0.167·23-s + 1.03·25-s − 1.02·27-s − 1.71·29-s + 0.481·31-s − 0.567·33-s + 0.0888·37-s − 0.309·39-s + 0.653·41-s − 0.151·43-s + 0.830·45-s + 0.101·47-s − 0.200·51-s − 0.466·53-s + 1.25·55-s − 0.618·57-s + 1.10·59-s − 1.60·61-s + 0.683·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(125.740\)
Root analytic conductor: \(11.2134\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 784,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.6059401907\)
\(L(\frac12)\) \(\approx\) \(0.6059401907\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 10.0T + 243T^{2} \)
5 \( 1 + 79.8T + 3.12e3T^{2} \)
11 \( 1 + 351.T + 1.61e5T^{2} \)
13 \( 1 + 291.T + 3.71e5T^{2} \)
17 \( 1 + 370.T + 1.41e6T^{2} \)
19 \( 1 + 1.50e3T + 2.47e6T^{2} \)
23 \( 1 - 425.T + 6.43e6T^{2} \)
29 \( 1 + 7.78e3T + 2.05e7T^{2} \)
31 \( 1 - 2.57e3T + 2.86e7T^{2} \)
37 \( 1 - 739.T + 6.93e7T^{2} \)
41 \( 1 - 7.02e3T + 1.15e8T^{2} \)
43 \( 1 + 1.83e3T + 1.47e8T^{2} \)
47 \( 1 - 1.53e3T + 2.29e8T^{2} \)
53 \( 1 + 9.53e3T + 4.18e8T^{2} \)
59 \( 1 - 2.96e4T + 7.14e8T^{2} \)
61 \( 1 + 4.65e4T + 8.44e8T^{2} \)
67 \( 1 + 2.67e4T + 1.35e9T^{2} \)
71 \( 1 - 1.43e4T + 1.80e9T^{2} \)
73 \( 1 + 7.00e4T + 2.07e9T^{2} \)
79 \( 1 - 2.70e4T + 3.07e9T^{2} \)
83 \( 1 - 7.97e4T + 3.93e9T^{2} \)
89 \( 1 - 4.35e4T + 5.58e9T^{2} \)
97 \( 1 - 1.03e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.307759976446065559328091921899, −8.564817453295444105363838353724, −7.82165641951233527777299216094, −7.35001764832547198476923126388, −6.04555844584081343154050568686, −4.88358503213123938750922381228, −3.96323708230849900041991978065, −3.08286700135097381506353677487, −2.14233959711887185248407727140, −0.32223496566032188068650867867, 0.32223496566032188068650867867, 2.14233959711887185248407727140, 3.08286700135097381506353677487, 3.96323708230849900041991978065, 4.88358503213123938750922381228, 6.04555844584081343154050568686, 7.35001764832547198476923126388, 7.82165641951233527777299216094, 8.564817453295444105363838353724, 9.307759976446065559328091921899

Graph of the $Z$-function along the critical line