Properties

Label 2-28e2-1.1-c5-0-52
Degree $2$
Conductor $784$
Sign $-1$
Analytic cond. $125.740$
Root an. cond. $11.2134$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·3-s − 16·5-s + 13·9-s + 76·11-s − 880·13-s + 256·15-s + 1.05e3·17-s + 1.93e3·19-s − 936·23-s − 2.86e3·25-s + 3.68e3·27-s − 3.98e3·29-s + 1.56e3·31-s − 1.21e3·33-s + 4.93e3·37-s + 1.40e4·39-s + 1.58e4·41-s + 1.64e4·43-s − 208·45-s − 2.07e4·47-s − 1.68e4·51-s − 3.74e4·53-s − 1.21e3·55-s − 3.09e4·57-s + 2.11e4·59-s + 2.99e3·61-s + 1.40e4·65-s + ⋯
L(s)  = 1  − 1.02·3-s − 0.286·5-s + 0.0534·9-s + 0.189·11-s − 1.44·13-s + 0.293·15-s + 0.886·17-s + 1.23·19-s − 0.368·23-s − 0.918·25-s + 0.971·27-s − 0.879·29-s + 0.293·31-s − 0.194·33-s + 0.592·37-s + 1.48·39-s + 1.47·41-s + 1.35·43-s − 0.0153·45-s − 1.37·47-s − 0.909·51-s − 1.82·53-s − 0.0542·55-s − 1.26·57-s + 0.790·59-s + 0.102·61-s + 0.413·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(125.740\)
Root analytic conductor: \(11.2134\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 784,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 16 T + p^{5} T^{2} \)
5 \( 1 + 16 T + p^{5} T^{2} \)
11 \( 1 - 76 T + p^{5} T^{2} \)
13 \( 1 + 880 T + p^{5} T^{2} \)
17 \( 1 - 1056 T + p^{5} T^{2} \)
19 \( 1 - 1936 T + p^{5} T^{2} \)
23 \( 1 + 936 T + p^{5} T^{2} \)
29 \( 1 + 3982 T + p^{5} T^{2} \)
31 \( 1 - 1568 T + p^{5} T^{2} \)
37 \( 1 - 4938 T + p^{5} T^{2} \)
41 \( 1 - 15840 T + p^{5} T^{2} \)
43 \( 1 - 16412 T + p^{5} T^{2} \)
47 \( 1 + 20768 T + p^{5} T^{2} \)
53 \( 1 + 37402 T + p^{5} T^{2} \)
59 \( 1 - 21136 T + p^{5} T^{2} \)
61 \( 1 - 2992 T + p^{5} T^{2} \)
67 \( 1 - 45836 T + p^{5} T^{2} \)
71 \( 1 - 49840 T + p^{5} T^{2} \)
73 \( 1 - 56320 T + p^{5} T^{2} \)
79 \( 1 + 40744 T + p^{5} T^{2} \)
83 \( 1 - 112464 T + p^{5} T^{2} \)
89 \( 1 + 64256 T + p^{5} T^{2} \)
97 \( 1 - 2272 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.480734054617966802332604679379, −7.957943204506859943187598669981, −7.46499361889830171718590638376, −6.34731097201404301510152403681, −5.51394436598893893263245732234, −4.84574670329281300904812797432, −3.65705436260426689468554717478, −2.45183153771855337641416495382, −0.975926757781164449322748518944, 0, 0.975926757781164449322748518944, 2.45183153771855337641416495382, 3.65705436260426689468554717478, 4.84574670329281300904812797432, 5.51394436598893893263245732234, 6.34731097201404301510152403681, 7.46499361889830171718590638376, 7.957943204506859943187598669981, 9.480734054617966802332604679379

Graph of the $Z$-function along the critical line