Properties

Label 2-28e2-1.1-c5-0-50
Degree $2$
Conductor $784$
Sign $1$
Analytic cond. $125.740$
Root an. cond. $11.2134$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 29.8·3-s − 21·5-s + 645.·9-s − 331.·11-s + 66.8·13-s − 625.·15-s + 240.·17-s − 441.·19-s + 1.07e3·23-s − 2.68e3·25-s + 1.19e4·27-s + 1.79e3·29-s + 5.68e3·31-s − 9.89e3·33-s + 1.12e4·37-s + 1.99e3·39-s + 1.20e4·41-s + 9.92e3·43-s − 1.35e4·45-s + 1.68e4·47-s + 7.16e3·51-s + 5.29e3·53-s + 6.96e3·55-s − 1.31e4·57-s − 4.13e4·59-s − 2.15e4·61-s − 1.40e3·65-s + ⋯
L(s)  = 1  + 1.91·3-s − 0.375·5-s + 2.65·9-s − 0.826·11-s + 0.109·13-s − 0.718·15-s + 0.201·17-s − 0.280·19-s + 0.422·23-s − 0.858·25-s + 3.16·27-s + 0.395·29-s + 1.06·31-s − 1.58·33-s + 1.34·37-s + 0.209·39-s + 1.12·41-s + 0.818·43-s − 0.997·45-s + 1.11·47-s + 0.385·51-s + 0.259·53-s + 0.310·55-s − 0.537·57-s − 1.54·59-s − 0.740·61-s − 0.0411·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(125.740\)
Root analytic conductor: \(11.2134\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 784,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.724690413\)
\(L(\frac12)\) \(\approx\) \(4.724690413\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 29.8T + 243T^{2} \)
5 \( 1 + 21T + 3.12e3T^{2} \)
11 \( 1 + 331.T + 1.61e5T^{2} \)
13 \( 1 - 66.8T + 3.71e5T^{2} \)
17 \( 1 - 240.T + 1.41e6T^{2} \)
19 \( 1 + 441.T + 2.47e6T^{2} \)
23 \( 1 - 1.07e3T + 6.43e6T^{2} \)
29 \( 1 - 1.79e3T + 2.05e7T^{2} \)
31 \( 1 - 5.68e3T + 2.86e7T^{2} \)
37 \( 1 - 1.12e4T + 6.93e7T^{2} \)
41 \( 1 - 1.20e4T + 1.15e8T^{2} \)
43 \( 1 - 9.92e3T + 1.47e8T^{2} \)
47 \( 1 - 1.68e4T + 2.29e8T^{2} \)
53 \( 1 - 5.29e3T + 4.18e8T^{2} \)
59 \( 1 + 4.13e4T + 7.14e8T^{2} \)
61 \( 1 + 2.15e4T + 8.44e8T^{2} \)
67 \( 1 - 2.66e4T + 1.35e9T^{2} \)
71 \( 1 - 5.80e4T + 1.80e9T^{2} \)
73 \( 1 + 3.99e4T + 2.07e9T^{2} \)
79 \( 1 - 4.39e4T + 3.07e9T^{2} \)
83 \( 1 + 2.24e4T + 3.93e9T^{2} \)
89 \( 1 - 2.40e4T + 5.58e9T^{2} \)
97 \( 1 - 7.18e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.386328555661137466794587455250, −8.629000350234050557449025953754, −7.80542821429889573465511720678, −7.49475661433990486094304128338, −6.19480858536123440781376662154, −4.68266917979253238955802365286, −3.90839344006863622562427890211, −2.90364524360692666053296665477, −2.25744959001926327203080281883, −0.927685826378288273855472556890, 0.927685826378288273855472556890, 2.25744959001926327203080281883, 2.90364524360692666053296665477, 3.90839344006863622562427890211, 4.68266917979253238955802365286, 6.19480858536123440781376662154, 7.49475661433990486094304128338, 7.80542821429889573465511720678, 8.629000350234050557449025953754, 9.386328555661137466794587455250

Graph of the $Z$-function along the critical line