Properties

Label 2-28e2-1.1-c5-0-28
Degree $2$
Conductor $784$
Sign $1$
Analytic cond. $125.740$
Root an. cond. $11.2134$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 19.3·3-s − 49.9·5-s + 129.·9-s + 351.·11-s − 853.·13-s − 965.·15-s − 2.26e3·17-s + 201.·19-s + 1.06e3·23-s − 626.·25-s − 2.18e3·27-s + 6.86e3·29-s + 5.40e3·31-s + 6.78e3·33-s + 9.91e3·37-s − 1.64e4·39-s + 9.38e3·41-s + 2.23e4·43-s − 6.49e3·45-s − 6.79e3·47-s − 4.37e4·51-s + 3.49e3·53-s − 1.75e4·55-s + 3.89e3·57-s + 2.75e4·59-s + 2.89e4·61-s + 4.26e4·65-s + ⋯
L(s)  = 1  + 1.23·3-s − 0.894·5-s + 0.534·9-s + 0.875·11-s − 1.40·13-s − 1.10·15-s − 1.90·17-s + 0.128·19-s + 0.421·23-s − 0.200·25-s − 0.576·27-s + 1.51·29-s + 1.00·31-s + 1.08·33-s + 1.19·37-s − 1.73·39-s + 0.871·41-s + 1.84·43-s − 0.477·45-s − 0.448·47-s − 2.35·51-s + 0.170·53-s − 0.782·55-s + 0.158·57-s + 1.03·59-s + 0.994·61-s + 1.25·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(125.740\)
Root analytic conductor: \(11.2134\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 784,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.466592247\)
\(L(\frac12)\) \(\approx\) \(2.466592247\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 19.3T + 243T^{2} \)
5 \( 1 + 49.9T + 3.12e3T^{2} \)
11 \( 1 - 351.T + 1.61e5T^{2} \)
13 \( 1 + 853.T + 3.71e5T^{2} \)
17 \( 1 + 2.26e3T + 1.41e6T^{2} \)
19 \( 1 - 201.T + 2.47e6T^{2} \)
23 \( 1 - 1.06e3T + 6.43e6T^{2} \)
29 \( 1 - 6.86e3T + 2.05e7T^{2} \)
31 \( 1 - 5.40e3T + 2.86e7T^{2} \)
37 \( 1 - 9.91e3T + 6.93e7T^{2} \)
41 \( 1 - 9.38e3T + 1.15e8T^{2} \)
43 \( 1 - 2.23e4T + 1.47e8T^{2} \)
47 \( 1 + 6.79e3T + 2.29e8T^{2} \)
53 \( 1 - 3.49e3T + 4.18e8T^{2} \)
59 \( 1 - 2.75e4T + 7.14e8T^{2} \)
61 \( 1 - 2.89e4T + 8.44e8T^{2} \)
67 \( 1 + 7.04e4T + 1.35e9T^{2} \)
71 \( 1 + 2.41e4T + 1.80e9T^{2} \)
73 \( 1 + 6.22e4T + 2.07e9T^{2} \)
79 \( 1 - 7.97e4T + 3.07e9T^{2} \)
83 \( 1 - 6.35e3T + 3.93e9T^{2} \)
89 \( 1 - 6.01e4T + 5.58e9T^{2} \)
97 \( 1 - 3.18e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.243650577848820066575591108375, −8.767446321765539548196833392207, −7.86374884018492693787264665078, −7.21976982222886859994870851329, −6.26584088602572726356797325398, −4.59266406479237992641535047284, −4.13752564794700705023683681250, −2.89291838437584190381658835076, −2.24574659604893835092873375820, −0.65535975778137028839418837245, 0.65535975778137028839418837245, 2.24574659604893835092873375820, 2.89291838437584190381658835076, 4.13752564794700705023683681250, 4.59266406479237992641535047284, 6.26584088602572726356797325398, 7.21976982222886859994870851329, 7.86374884018492693787264665078, 8.767446321765539548196833392207, 9.243650577848820066575591108375

Graph of the $Z$-function along the critical line