Properties

Label 2-2898-1.1-c1-0-3
Degree $2$
Conductor $2898$
Sign $1$
Analytic cond. $23.1406$
Root an. cond. $4.81047$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 0.484·5-s − 7-s − 8-s + 0.484·10-s − 6.24·11-s − 1.12·13-s + 14-s + 16-s − 3.60·17-s + 4.64·19-s − 0.484·20-s + 6.24·22-s + 23-s − 4.76·25-s + 1.12·26-s − 28-s + 1.76·29-s − 1.60·31-s − 32-s + 3.60·34-s + 0.484·35-s − 3.76·37-s − 4.64·38-s + 0.484·40-s + 2.73·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.216·5-s − 0.377·7-s − 0.353·8-s + 0.153·10-s − 1.88·11-s − 0.311·13-s + 0.267·14-s + 0.250·16-s − 0.875·17-s + 1.06·19-s − 0.108·20-s + 1.33·22-s + 0.208·23-s − 0.952·25-s + 0.220·26-s − 0.188·28-s + 0.327·29-s − 0.289·31-s − 0.176·32-s + 0.619·34-s + 0.0819·35-s − 0.618·37-s − 0.752·38-s + 0.0766·40-s + 0.427·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2898 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2898 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2898\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 23\)
Sign: $1$
Analytic conductor: \(23.1406\)
Root analytic conductor: \(4.81047\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2898,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7152105975\)
\(L(\frac12)\) \(\approx\) \(0.7152105975\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 + T \)
23 \( 1 - T \)
good5 \( 1 + 0.484T + 5T^{2} \)
11 \( 1 + 6.24T + 11T^{2} \)
13 \( 1 + 1.12T + 13T^{2} \)
17 \( 1 + 3.60T + 17T^{2} \)
19 \( 1 - 4.64T + 19T^{2} \)
29 \( 1 - 1.76T + 29T^{2} \)
31 \( 1 + 1.60T + 31T^{2} \)
37 \( 1 + 3.76T + 37T^{2} \)
41 \( 1 - 2.73T + 41T^{2} \)
43 \( 1 - 6.79T + 43T^{2} \)
47 \( 1 + 6.15T + 47T^{2} \)
53 \( 1 - 11.5T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 9.21T + 61T^{2} \)
67 \( 1 - 12.4T + 67T^{2} \)
71 \( 1 - 8.31T + 71T^{2} \)
73 \( 1 - 11.2T + 73T^{2} \)
79 \( 1 + 4.24T + 79T^{2} \)
83 \( 1 + 3.67T + 83T^{2} \)
89 \( 1 + 13.2T + 89T^{2} \)
97 \( 1 - 5.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.675605657820078765780426376615, −8.024020066526361703933500731093, −7.39730013880484237269451133064, −6.75058096742334625765521149839, −5.63930158470210406056951416215, −5.10582043289920942927495970885, −3.89603570374756048327894118556, −2.84140474575693714984031827231, −2.16260930751603845665469339359, −0.54588673487748155304859310397, 0.54588673487748155304859310397, 2.16260930751603845665469339359, 2.84140474575693714984031827231, 3.89603570374756048327894118556, 5.10582043289920942927495970885, 5.63930158470210406056951416215, 6.75058096742334625765521149839, 7.39730013880484237269451133064, 8.024020066526361703933500731093, 8.675605657820078765780426376615

Graph of the $Z$-function along the critical line