L(s) = 1 | + (0.939 − 0.342i)2-s + (0.173 − 0.984i)3-s + (0.766 − 0.642i)4-s + (−0.173 − 0.984i)6-s + (0.5 + 0.866i)7-s + (0.500 − 0.866i)8-s + (−0.5 − 0.866i)12-s + (0.173 + 0.984i)13-s + (0.766 + 0.642i)14-s + (0.173 − 0.984i)16-s + (0.939 − 0.342i)17-s + (0.939 − 0.342i)21-s + (−0.766 + 0.642i)23-s + (−0.766 − 0.642i)24-s + (0.173 + 0.984i)25-s + (0.5 + 0.866i)26-s + ⋯ |
L(s) = 1 | + (0.939 − 0.342i)2-s + (0.173 − 0.984i)3-s + (0.766 − 0.642i)4-s + (−0.173 − 0.984i)6-s + (0.5 + 0.866i)7-s + (0.500 − 0.866i)8-s + (−0.5 − 0.866i)12-s + (0.173 + 0.984i)13-s + (0.766 + 0.642i)14-s + (0.173 − 0.984i)16-s + (0.939 − 0.342i)17-s + (0.939 − 0.342i)21-s + (−0.766 + 0.642i)23-s + (−0.766 − 0.642i)24-s + (0.173 + 0.984i)25-s + (0.5 + 0.866i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.378 + 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.378 + 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.592226248\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.592226248\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.939 + 0.342i)T \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.173 + 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 5 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.173 - 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 17 | \( 1 + (-0.939 + 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 23 | \( 1 + (0.766 - 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 29 | \( 1 + (0.939 + 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + 2T + T^{2} \) |
| 41 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 43 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 47 | \( 1 + (1.87 + 0.684i)T + (0.766 + 0.642i)T^{2} \) |
| 53 | \( 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 59 | \( 1 + (0.939 - 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 61 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 67 | \( 1 + (0.939 + 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 73 | \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 79 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 97 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.744363192784930897321500821018, −7.82204998226792337518212212441, −7.18615924972471862552597952745, −6.52774437326228030241990723077, −5.60388848093231338754180399671, −5.09450502804641131273600086334, −3.98551967198951257638640478051, −3.10786230711116819668335042260, −1.89787353921309520428918247805, −1.62497127028816034218825278292,
1.59592751060580728261813543724, 3.06206898268024071980378589579, 3.68248748438174691994156191238, 4.39969466412613144149664653094, 5.05149506919231080578216474707, 5.84442100472926051764147726702, 6.74546967741827125935311857998, 7.62659828793603534942575678213, 8.123606209540318977044892358585, 8.995862438182720560129959864959