L(s) = 1 | + (0.939 − 0.342i)2-s + (0.173 − 0.984i)3-s + (0.766 − 0.642i)4-s + (−0.173 − 0.984i)6-s + (0.5 + 0.866i)7-s + (0.500 − 0.866i)8-s + (−0.5 − 0.866i)12-s + (0.173 + 0.984i)13-s + (0.766 + 0.642i)14-s + (0.173 − 0.984i)16-s + (0.939 − 0.342i)17-s + (0.939 − 0.342i)21-s + (−0.766 + 0.642i)23-s + (−0.766 − 0.642i)24-s + (0.173 + 0.984i)25-s + (0.5 + 0.866i)26-s + ⋯ |
L(s) = 1 | + (0.939 − 0.342i)2-s + (0.173 − 0.984i)3-s + (0.766 − 0.642i)4-s + (−0.173 − 0.984i)6-s + (0.5 + 0.866i)7-s + (0.500 − 0.866i)8-s + (−0.5 − 0.866i)12-s + (0.173 + 0.984i)13-s + (0.766 + 0.642i)14-s + (0.173 − 0.984i)16-s + (0.939 − 0.342i)17-s + (0.939 − 0.342i)21-s + (−0.766 + 0.642i)23-s + (−0.766 − 0.642i)24-s + (0.173 + 0.984i)25-s + (0.5 + 0.866i)26-s + ⋯ |
Λ(s)=(=(2888s/2ΓC(s)L(s)(0.378+0.925i)Λ(1−s)
Λ(s)=(=(2888s/2ΓC(s)L(s)(0.378+0.925i)Λ(1−s)
Degree: |
2 |
Conductor: |
2888
= 23⋅192
|
Sign: |
0.378+0.925i
|
Analytic conductor: |
1.44129 |
Root analytic conductor: |
1.20054 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2888(1021,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2888, ( :0), 0.378+0.925i)
|
Particular Values
L(21) |
≈ |
2.592226248 |
L(21) |
≈ |
2.592226248 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.939+0.342i)T |
| 19 | 1 |
good | 3 | 1+(−0.173+0.984i)T+(−0.939−0.342i)T2 |
| 5 | 1+(−0.173−0.984i)T2 |
| 7 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+(−0.173−0.984i)T+(−0.939+0.342i)T2 |
| 17 | 1+(−0.939+0.342i)T+(0.766−0.642i)T2 |
| 23 | 1+(0.766−0.642i)T+(0.173−0.984i)T2 |
| 29 | 1+(0.939+0.342i)T+(0.766+0.642i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+2T+T2 |
| 41 | 1+(0.939+0.342i)T2 |
| 43 | 1+(−0.173−0.984i)T2 |
| 47 | 1+(1.87+0.684i)T+(0.766+0.642i)T2 |
| 53 | 1+(−0.766+0.642i)T+(0.173−0.984i)T2 |
| 59 | 1+(0.939−0.342i)T+(0.766−0.642i)T2 |
| 61 | 1+(−0.173+0.984i)T2 |
| 67 | 1+(0.939+0.342i)T+(0.766+0.642i)T2 |
| 71 | 1+(−0.173−0.984i)T2 |
| 73 | 1+(0.173−0.984i)T+(−0.939−0.342i)T2 |
| 79 | 1+(0.939+0.342i)T2 |
| 83 | 1+(0.5−0.866i)T2 |
| 89 | 1+(0.939−0.342i)T2 |
| 97 | 1+(−0.766+0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.744363192784930897321500821018, −7.82204998226792337518212212441, −7.18615924972471862552597952745, −6.52774437326228030241990723077, −5.60388848093231338754180399671, −5.09450502804641131273600086334, −3.98551967198951257638640478051, −3.10786230711116819668335042260, −1.89787353921309520428918247805, −1.62497127028816034218825278292,
1.59592751060580728261813543724, 3.06206898268024071980378589579, 3.68248748438174691994156191238, 4.39969466412613144149664653094, 5.05149506919231080578216474707, 5.84442100472926051764147726702, 6.74546967741827125935311857998, 7.62659828793603534942575678213, 8.123606209540318977044892358585, 8.995862438182720560129959864959