Properties

Label 2-288-1.1-c1-0-2
Degree $2$
Conductor $288$
Sign $1$
Analytic cond. $2.29969$
Root an. cond. $1.51647$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 6·13-s + 8·17-s + 11·25-s − 4·29-s − 2·37-s − 8·41-s − 7·49-s − 4·53-s − 10·61-s − 24·65-s + 6·73-s + 32·85-s + 16·89-s − 18·97-s − 20·101-s − 6·109-s + 16·113-s + ⋯
L(s)  = 1  + 1.78·5-s − 1.66·13-s + 1.94·17-s + 11/5·25-s − 0.742·29-s − 0.328·37-s − 1.24·41-s − 49-s − 0.549·53-s − 1.28·61-s − 2.97·65-s + 0.702·73-s + 3.47·85-s + 1.69·89-s − 1.82·97-s − 1.99·101-s − 0.574·109-s + 1.50·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(288\)    =    \(2^{5} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(2.29969\)
Root analytic conductor: \(1.51647\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{288} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 288,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.626733000\)
\(L(\frac12)\) \(\approx\) \(1.626733000\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 8 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 4 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 16 T + p T^{2} \)
97 \( 1 + 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.01980574446063071553934149258, −10.55965367152125573686069092164, −9.816898356311968022813901953755, −9.372732192062624224981148085357, −7.909987862286350183375095910259, −6.81411763071537323600840753231, −5.66990658847027277525585177583, −5.01237677697104957198001932438, −3.02473421793484999957631922902, −1.74502909344688296171382532979, 1.74502909344688296171382532979, 3.02473421793484999957631922902, 5.01237677697104957198001932438, 5.66990658847027277525585177583, 6.81411763071537323600840753231, 7.909987862286350183375095910259, 9.372732192062624224981148085357, 9.816898356311968022813901953755, 10.55965367152125573686069092164, 12.01980574446063071553934149258

Graph of the $Z$-function along the critical line