Properties

Label 2-286650-1.1-c1-0-127
Degree $2$
Conductor $286650$
Sign $1$
Analytic cond. $2288.91$
Root an. cond. $47.8425$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s − 2·11-s + 13-s + 16-s − 5·17-s + 5·19-s − 2·22-s − 4·23-s + 26-s + 2·29-s + 4·31-s + 32-s − 5·34-s + 4·37-s + 5·38-s + 3·41-s + 11·43-s − 2·44-s − 4·46-s + 2·47-s + 52-s − 6·53-s + 2·58-s + 6·59-s + 4·62-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s − 0.603·11-s + 0.277·13-s + 1/4·16-s − 1.21·17-s + 1.14·19-s − 0.426·22-s − 0.834·23-s + 0.196·26-s + 0.371·29-s + 0.718·31-s + 0.176·32-s − 0.857·34-s + 0.657·37-s + 0.811·38-s + 0.468·41-s + 1.67·43-s − 0.301·44-s − 0.589·46-s + 0.291·47-s + 0.138·52-s − 0.824·53-s + 0.262·58-s + 0.781·59-s + 0.508·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(286650\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2288.91\)
Root analytic conductor: \(47.8425\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 286650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.384926251\)
\(L(\frac12)\) \(\approx\) \(4.384926251\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 5 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 - 11 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 - 14 T + p T^{2} \)
71 \( 1 - 7 T + p T^{2} \)
73 \( 1 - 15 T + p T^{2} \)
79 \( 1 + 11 T + p T^{2} \)
83 \( 1 - 3 T + p T^{2} \)
89 \( 1 + T + p T^{2} \)
97 \( 1 + 13 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.67917813932837, −12.43582046243695, −11.82746747041095, −11.34172966018200, −11.00693333208005, −10.62888577606515, −9.910686626583208, −9.630931870993208, −9.089434731768212, −8.426972184690198, −7.995887465229388, −7.632534040468041, −6.989647531061121, −6.546589940136528, −6.109550543311592, −5.515936960223627, −5.155290801940360, −4.557033622062694, −4.024981177447809, −3.702249931590108, −2.735099587140164, −2.628910648735625, −1.948995965877139, −1.131184642810546, −0.5206274634854719, 0.5206274634854719, 1.131184642810546, 1.948995965877139, 2.628910648735625, 2.735099587140164, 3.702249931590108, 4.024981177447809, 4.557033622062694, 5.155290801940360, 5.515936960223627, 6.109550543311592, 6.546589940136528, 6.989647531061121, 7.632534040468041, 7.995887465229388, 8.426972184690198, 9.089434731768212, 9.630931870993208, 9.910686626583208, 10.62888577606515, 11.00693333208005, 11.34172966018200, 11.82746747041095, 12.43582046243695, 12.67917813932837

Graph of the $Z$-function along the critical line