Properties

Label 2-286650-1.1-c1-0-10
Degree $2$
Conductor $286650$
Sign $1$
Analytic cond. $2288.91$
Root an. cond. $47.8425$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s + 11-s − 13-s + 16-s − 8·17-s + 4·19-s − 22-s + 4·23-s + 26-s + 9·29-s − 8·31-s − 32-s + 8·34-s + 2·37-s − 4·38-s + 5·41-s − 5·43-s + 44-s − 4·46-s − 4·47-s − 52-s + 9·53-s − 9·58-s − 15·59-s − 10·61-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s + 0.301·11-s − 0.277·13-s + 1/4·16-s − 1.94·17-s + 0.917·19-s − 0.213·22-s + 0.834·23-s + 0.196·26-s + 1.67·29-s − 1.43·31-s − 0.176·32-s + 1.37·34-s + 0.328·37-s − 0.648·38-s + 0.780·41-s − 0.762·43-s + 0.150·44-s − 0.589·46-s − 0.583·47-s − 0.138·52-s + 1.23·53-s − 1.18·58-s − 1.95·59-s − 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(286650\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2288.91\)
Root analytic conductor: \(47.8425\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 286650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4426062872\)
\(L(\frac12)\) \(\approx\) \(0.4426062872\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 - T + p T^{2} \)
17 \( 1 + 8 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 5 T + p T^{2} \)
43 \( 1 + 5 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + 15 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 + 8 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 + 7 T + p T^{2} \)
89 \( 1 + 15 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.62028767347004, −12.18841871410763, −11.74284074954532, −11.22925757163876, −10.89720051462516, −10.49753438082362, −9.883601662808675, −9.434935295652811, −9.003215649327005, −8.697185858469691, −8.191647310108367, −7.529971100896754, −7.125040520501228, −6.786231653280276, −6.237904663688475, −5.720659885953348, −5.114486862719981, −4.469785681393737, −4.230775826034911, −3.305337627781935, −2.820383573734393, −2.422295400807566, −1.505732056868602, −1.267424448233722, −0.2013223196167277, 0.2013223196167277, 1.267424448233722, 1.505732056868602, 2.422295400807566, 2.820383573734393, 3.305337627781935, 4.230775826034911, 4.469785681393737, 5.114486862719981, 5.720659885953348, 6.237904663688475, 6.786231653280276, 7.125040520501228, 7.529971100896754, 8.191647310108367, 8.697185858469691, 9.003215649327005, 9.434935295652811, 9.883601662808675, 10.49753438082362, 10.89720051462516, 11.22925757163876, 11.74284074954532, 12.18841871410763, 12.62028767347004

Graph of the $Z$-function along the critical line