L(s) = 1 | − 2-s + 3-s + 4-s + 5-s − 6-s − 7-s − 8-s + 9-s − 10-s − 11-s + 12-s + 13-s + 14-s + 15-s + 16-s + 17-s − 18-s + 20-s − 21-s + 22-s − 24-s − 26-s + 27-s − 28-s − 30-s − 32-s − 33-s + ⋯ |
L(s) = 1 | − 2-s + 3-s + 4-s + 5-s − 6-s − 7-s − 8-s + 9-s − 10-s − 11-s + 12-s + 13-s + 14-s + 15-s + 16-s + 17-s − 18-s + 20-s − 21-s + 22-s − 24-s − 26-s + 27-s − 28-s − 30-s − 32-s − 33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.282141484\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.282141484\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 + T \) |
| 17 | \( 1 - T \) |
good | 5 | \( 1 - T + T^{2} \) |
| 11 | \( 1 + T + T^{2} \) |
| 13 | \( 1 - T + T^{2} \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( 1 - T + T^{2} \) |
| 59 | \( ( 1 - T )^{2} \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 + T + T^{2} \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.966209306155156683366282574306, −8.368601849865015168711863454411, −7.63921353472406810671670450749, −6.87258168255748518065606283844, −6.07764231773660794551496109383, −5.43532887251237540194712724526, −3.82739914979174261907930391675, −2.98961212124006038709005470793, −2.33142951080950305408421192783, −1.23954574406193814077301980605,
1.23954574406193814077301980605, 2.33142951080950305408421192783, 2.98961212124006038709005470793, 3.82739914979174261907930391675, 5.43532887251237540194712724526, 6.07764231773660794551496109383, 6.87258168255748518065606283844, 7.63921353472406810671670450749, 8.368601849865015168711863454411, 8.966209306155156683366282574306