Properties

Label 2-285-1.1-c9-0-47
Degree $2$
Conductor $285$
Sign $1$
Analytic cond. $146.785$
Root an. cond. $12.1154$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.10·2-s − 81·3-s − 429.·4-s + 625·5-s − 737.·6-s + 6.71e3·7-s − 8.56e3·8-s + 6.56e3·9-s + 5.68e3·10-s + 7.38e4·11-s + 3.47e4·12-s + 4.82e4·13-s + 6.11e4·14-s − 5.06e4·15-s + 1.41e5·16-s + 3.02e5·17-s + 5.97e4·18-s − 1.30e5·19-s − 2.68e5·20-s − 5.43e5·21-s + 6.72e5·22-s + 2.35e6·23-s + 6.93e5·24-s + 3.90e5·25-s + 4.38e5·26-s − 5.31e5·27-s − 2.88e6·28-s + ⋯
L(s)  = 1  + 0.402·2-s − 0.577·3-s − 0.838·4-s + 0.447·5-s − 0.232·6-s + 1.05·7-s − 0.739·8-s + 0.333·9-s + 0.179·10-s + 1.52·11-s + 0.483·12-s + 0.468·13-s + 0.425·14-s − 0.258·15-s + 0.540·16-s + 0.877·17-s + 0.134·18-s − 0.229·19-s − 0.374·20-s − 0.610·21-s + 0.611·22-s + 1.75·23-s + 0.426·24-s + 0.200·25-s + 0.188·26-s − 0.192·27-s − 0.885·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(285\)    =    \(3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(146.785\)
Root analytic conductor: \(12.1154\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 285,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(2.890883092\)
\(L(\frac12)\) \(\approx\) \(2.890883092\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 81T \)
5 \( 1 - 625T \)
19 \( 1 + 1.30e5T \)
good2 \( 1 - 9.10T + 512T^{2} \)
7 \( 1 - 6.71e3T + 4.03e7T^{2} \)
11 \( 1 - 7.38e4T + 2.35e9T^{2} \)
13 \( 1 - 4.82e4T + 1.06e10T^{2} \)
17 \( 1 - 3.02e5T + 1.18e11T^{2} \)
23 \( 1 - 2.35e6T + 1.80e12T^{2} \)
29 \( 1 + 2.23e6T + 1.45e13T^{2} \)
31 \( 1 - 1.87e5T + 2.64e13T^{2} \)
37 \( 1 + 4.75e6T + 1.29e14T^{2} \)
41 \( 1 + 9.93e6T + 3.27e14T^{2} \)
43 \( 1 + 6.79e6T + 5.02e14T^{2} \)
47 \( 1 - 2.32e7T + 1.11e15T^{2} \)
53 \( 1 - 6.12e7T + 3.29e15T^{2} \)
59 \( 1 - 1.19e7T + 8.66e15T^{2} \)
61 \( 1 - 1.12e4T + 1.16e16T^{2} \)
67 \( 1 + 1.64e8T + 2.72e16T^{2} \)
71 \( 1 + 2.51e8T + 4.58e16T^{2} \)
73 \( 1 + 1.11e8T + 5.88e16T^{2} \)
79 \( 1 - 3.07e8T + 1.19e17T^{2} \)
83 \( 1 + 2.22e8T + 1.86e17T^{2} \)
89 \( 1 + 3.96e8T + 3.50e17T^{2} \)
97 \( 1 - 1.27e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.29298907841265842845413460014, −9.196698895472659940372242563672, −8.585829198020997893291791125462, −7.21315310107207929948630882173, −6.06633058662662722983880622504, −5.23139116087686483720141526393, −4.39980707991666001276822078537, −3.38075638818063455821643929124, −1.55651129063327280765132020012, −0.833014284840587501281655905950, 0.833014284840587501281655905950, 1.55651129063327280765132020012, 3.38075638818063455821643929124, 4.39980707991666001276822078537, 5.23139116087686483720141526393, 6.06633058662662722983880622504, 7.21315310107207929948630882173, 8.585829198020997893291791125462, 9.196698895472659940372242563672, 10.29298907841265842845413460014

Graph of the $Z$-function along the critical line