Properties

Label 2-285-1.1-c9-0-25
Degree $2$
Conductor $285$
Sign $1$
Analytic cond. $146.785$
Root an. cond. $12.1154$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 32.1·2-s − 81·3-s + 520.·4-s + 625·5-s + 2.60e3·6-s + 7.29e3·7-s − 264.·8-s + 6.56e3·9-s − 2.00e4·10-s − 7.92e4·11-s − 4.21e4·12-s + 1.48e5·13-s − 2.34e5·14-s − 5.06e4·15-s − 2.57e5·16-s − 4.03e5·17-s − 2.10e5·18-s − 1.30e5·19-s + 3.25e5·20-s − 5.90e5·21-s + 2.54e6·22-s + 1.87e6·23-s + 2.14e4·24-s + 3.90e5·25-s − 4.76e6·26-s − 5.31e5·27-s + 3.79e6·28-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 1.01·4-s + 0.447·5-s + 0.819·6-s + 1.14·7-s − 0.0228·8-s + 0.333·9-s − 0.634·10-s − 1.63·11-s − 0.586·12-s + 1.43·13-s − 1.62·14-s − 0.258·15-s − 0.983·16-s − 1.17·17-s − 0.473·18-s − 0.229·19-s + 0.454·20-s − 0.662·21-s + 2.31·22-s + 1.39·23-s + 0.0131·24-s + 0.200·25-s − 2.04·26-s − 0.192·27-s + 1.16·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(285\)    =    \(3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(146.785\)
Root analytic conductor: \(12.1154\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 285,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.9383866258\)
\(L(\frac12)\) \(\approx\) \(0.9383866258\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 81T \)
5 \( 1 - 625T \)
19 \( 1 + 1.30e5T \)
good2 \( 1 + 32.1T + 512T^{2} \)
7 \( 1 - 7.29e3T + 4.03e7T^{2} \)
11 \( 1 + 7.92e4T + 2.35e9T^{2} \)
13 \( 1 - 1.48e5T + 1.06e10T^{2} \)
17 \( 1 + 4.03e5T + 1.18e11T^{2} \)
23 \( 1 - 1.87e6T + 1.80e12T^{2} \)
29 \( 1 + 4.55e6T + 1.45e13T^{2} \)
31 \( 1 - 7.02e6T + 2.64e13T^{2} \)
37 \( 1 - 6.13e6T + 1.29e14T^{2} \)
41 \( 1 - 8.76e6T + 3.27e14T^{2} \)
43 \( 1 - 1.06e7T + 5.02e14T^{2} \)
47 \( 1 + 2.81e7T + 1.11e15T^{2} \)
53 \( 1 - 7.72e7T + 3.29e15T^{2} \)
59 \( 1 + 6.20e7T + 8.66e15T^{2} \)
61 \( 1 - 5.26e7T + 1.16e16T^{2} \)
67 \( 1 - 2.09e8T + 2.72e16T^{2} \)
71 \( 1 + 3.12e8T + 4.58e16T^{2} \)
73 \( 1 + 2.93e8T + 5.88e16T^{2} \)
79 \( 1 - 1.63e8T + 1.19e17T^{2} \)
83 \( 1 - 7.23e8T + 1.86e17T^{2} \)
89 \( 1 - 3.62e8T + 3.50e17T^{2} \)
97 \( 1 + 3.40e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.42225837441992889778293262528, −9.196708868473622003201282487413, −8.404929579584721252218413667200, −7.68504254328550733887589756105, −6.58214406745222901100507305420, −5.39325193519507914284706887359, −4.46555903399599638431357520036, −2.48769041241462520657387353538, −1.49133106620254065270928848559, −0.59207277838887156509392874591, 0.59207277838887156509392874591, 1.49133106620254065270928848559, 2.48769041241462520657387353538, 4.46555903399599638431357520036, 5.39325193519507914284706887359, 6.58214406745222901100507305420, 7.68504254328550733887589756105, 8.404929579584721252218413667200, 9.196708868473622003201282487413, 10.42225837441992889778293262528

Graph of the $Z$-function along the critical line