L(s) = 1 | − 6.41·2-s − 81·3-s − 470.·4-s + 625·5-s + 519.·6-s − 7.66e3·7-s + 6.30e3·8-s + 6.56e3·9-s − 4.00e3·10-s + 3.71e3·11-s + 3.81e4·12-s + 1.40e5·13-s + 4.91e4·14-s − 5.06e4·15-s + 2.00e5·16-s − 2.94e4·17-s − 4.20e4·18-s − 1.30e5·19-s − 2.94e5·20-s + 6.20e5·21-s − 2.38e4·22-s + 5.43e5·23-s − 5.10e5·24-s + 3.90e5·25-s − 8.97e5·26-s − 5.31e5·27-s + 3.60e6·28-s + ⋯ |
L(s) = 1 | − 0.283·2-s − 0.577·3-s − 0.919·4-s + 0.447·5-s + 0.163·6-s − 1.20·7-s + 0.544·8-s + 0.333·9-s − 0.126·10-s + 0.0765·11-s + 0.530·12-s + 1.35·13-s + 0.341·14-s − 0.258·15-s + 0.765·16-s − 0.0854·17-s − 0.0944·18-s − 0.229·19-s − 0.411·20-s + 0.696·21-s − 0.0216·22-s + 0.404·23-s − 0.314·24-s + 0.200·25-s − 0.385·26-s − 0.192·27-s + 1.10·28-s + ⋯ |
Λ(s)=(=(285s/2ΓC(s)L(s)Λ(10−s)
Λ(s)=(=(285s/2ΓC(s+9/2)L(s)Λ(1−s)
Particular Values
L(5) |
≈ |
0.8294947967 |
L(21) |
≈ |
0.8294947967 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+81T |
| 5 | 1−625T |
| 19 | 1+1.30e5T |
good | 2 | 1+6.41T+512T2 |
| 7 | 1+7.66e3T+4.03e7T2 |
| 11 | 1−3.71e3T+2.35e9T2 |
| 13 | 1−1.40e5T+1.06e10T2 |
| 17 | 1+2.94e4T+1.18e11T2 |
| 23 | 1−5.43e5T+1.80e12T2 |
| 29 | 1−6.53e5T+1.45e13T2 |
| 31 | 1+6.20e6T+2.64e13T2 |
| 37 | 1+1.43e7T+1.29e14T2 |
| 41 | 1+1.40e7T+3.27e14T2 |
| 43 | 1−3.38e7T+5.02e14T2 |
| 47 | 1−4.14e7T+1.11e15T2 |
| 53 | 1+6.45e7T+3.29e15T2 |
| 59 | 1−7.94e7T+8.66e15T2 |
| 61 | 1−3.29e7T+1.16e16T2 |
| 67 | 1+1.96e8T+2.72e16T2 |
| 71 | 1+3.62e8T+4.58e16T2 |
| 73 | 1+2.73e8T+5.88e16T2 |
| 79 | 1+2.95e8T+1.19e17T2 |
| 83 | 1−2.00e8T+1.86e17T2 |
| 89 | 1−1.00e9T+3.50e17T2 |
| 97 | 1+1.03e9T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.24420256842622118014229201573, −9.242270727346554066318303738907, −8.705127510610751171542761257888, −7.26505326812248557010605115188, −6.21012025284651789196901280147, −5.47762940496209556894276104519, −4.18947024293864303287246607980, −3.25709185327697896925250750672, −1.52101642616700767367612613966, −0.46497635303538942817085906856,
0.46497635303538942817085906856, 1.52101642616700767367612613966, 3.25709185327697896925250750672, 4.18947024293864303287246607980, 5.47762940496209556894276104519, 6.21012025284651789196901280147, 7.26505326812248557010605115188, 8.705127510610751171542761257888, 9.242270727346554066318303738907, 10.24420256842622118014229201573