Properties

Label 2-283140-1.1-c1-0-27
Degree $2$
Conductor $283140$
Sign $1$
Analytic cond. $2260.88$
Root an. cond. $47.5487$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4·7-s + 13-s − 17-s + 7·23-s + 25-s − 10·29-s + 3·31-s + 4·35-s + 12·37-s + 2·41-s + 10·43-s − 3·47-s + 9·49-s − 5·53-s + 14·59-s + 5·61-s + 65-s + 12·67-s + 8·71-s + 16·73-s + 3·79-s − 8·83-s − 85-s + 4·91-s + 12·97-s + 101-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.51·7-s + 0.277·13-s − 0.242·17-s + 1.45·23-s + 1/5·25-s − 1.85·29-s + 0.538·31-s + 0.676·35-s + 1.97·37-s + 0.312·41-s + 1.52·43-s − 0.437·47-s + 9/7·49-s − 0.686·53-s + 1.82·59-s + 0.640·61-s + 0.124·65-s + 1.46·67-s + 0.949·71-s + 1.87·73-s + 0.337·79-s − 0.878·83-s − 0.108·85-s + 0.419·91-s + 1.21·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(283140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2260.88\)
Root analytic conductor: \(47.5487\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 283140,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.548013525\)
\(L(\frac12)\) \(\approx\) \(5.548013525\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 - 12 T + p T^{2} \) 1.37.am
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.85948841041407, −12.35692368490031, −11.52572724509187, −11.35770861163502, −10.97894003722951, −10.69102027494298, −9.894891541373227, −9.363109337783002, −9.217420623990109, −8.474861222892765, −8.057553712646077, −7.755442576254906, −7.087294593863368, −6.722271489591559, −6.015026926542963, −5.541405180055398, −5.141745819541430, −4.659047335179717, −4.106537512698744, −3.627371498397292, −2.807213794869684, −2.231177736761809, −1.890811280844047, −0.9940605036153031, −0.7635806006137174, 0.7635806006137174, 0.9940605036153031, 1.890811280844047, 2.231177736761809, 2.807213794869684, 3.627371498397292, 4.106537512698744, 4.659047335179717, 5.141745819541430, 5.541405180055398, 6.015026926542963, 6.722271489591559, 7.087294593863368, 7.755442576254906, 8.057553712646077, 8.474861222892765, 9.217420623990109, 9.363109337783002, 9.894891541373227, 10.69102027494298, 10.97894003722951, 11.35770861163502, 11.52572724509187, 12.35692368490031, 12.85948841041407

Graph of the $Z$-function along the critical line