L(s) = 1 | + 3.31·3-s − 3i·5-s + 8·9-s + 3.31·11-s − 9.94i·15-s + 3.31i·23-s − 4·25-s + 16.5·27-s + 9.94i·31-s + 11·33-s − 7i·37-s − 24i·45-s − 6.63i·47-s − 7·49-s − 6i·53-s + ⋯ |
L(s) = 1 | + 1.91·3-s − 1.34i·5-s + 2.66·9-s + 1.00·11-s − 2.56i·15-s + 0.691i·23-s − 0.800·25-s + 3.19·27-s + 1.78i·31-s + 1.91·33-s − 1.15i·37-s − 3.57i·45-s − 0.967i·47-s − 49-s − 0.824i·53-s + ⋯ |
Λ(s)=(=(2816s/2ΓC(s)L(s)(0.707+0.707i)Λ(2−s)
Λ(s)=(=(2816s/2ΓC(s+1/2)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
2816
= 28⋅11
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
22.4858 |
Root analytic conductor: |
4.74192 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2816(1407,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2816, ( :1/2), 0.707+0.707i)
|
Particular Values
L(1) |
≈ |
4.164253662 |
L(21) |
≈ |
4.164253662 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1−3.31T |
good | 3 | 1−3.31T+3T2 |
| 5 | 1+3iT−5T2 |
| 7 | 1+7T2 |
| 13 | 1+13T2 |
| 17 | 1−17T2 |
| 19 | 1−19T2 |
| 23 | 1−3.31iT−23T2 |
| 29 | 1+29T2 |
| 31 | 1−9.94iT−31T2 |
| 37 | 1+7iT−37T2 |
| 41 | 1−41T2 |
| 43 | 1−43T2 |
| 47 | 1+6.63iT−47T2 |
| 53 | 1+6iT−53T2 |
| 59 | 1+3.31T+59T2 |
| 61 | 1+61T2 |
| 67 | 1+9.94T+67T2 |
| 71 | 1−16.5iT−71T2 |
| 73 | 1−73T2 |
| 79 | 1+79T2 |
| 83 | 1−83T2 |
| 89 | 1−9T+89T2 |
| 97 | 1+17T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.594219145927245831589693873961, −8.346137031523468576610632620350, −7.37106032732570703157523247940, −6.74073489459835952980295578983, −5.40332961934681688588666639330, −4.51761137104174719945196121106, −3.84820595234986949428889067284, −3.09277439014469618477807125665, −1.86137532145363574658900962186, −1.21986679994038940261050732527,
1.52562431655728173306011074383, 2.52183389423270904862779536715, 3.08465445247433503966741023318, 3.86754329358391859924914604225, 4.56400322265379211794966593772, 6.28112950243654580729310155764, 6.69706700067729986285344019398, 7.63748514795801563898215215484, 7.973261088010321470903721658248, 9.004101929207985475408220972290