L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.866 + 0.499i)4-s − 0.517·5-s + (−0.707 − 0.707i)8-s + (0.499 + 0.133i)10-s − 1.41i·11-s − i·13-s + (0.500 + 0.866i)16-s + (−0.448 − 0.258i)20-s + (−0.366 + 1.36i)22-s − 0.732·25-s + (−0.258 + 0.965i)26-s + (−0.258 − 0.965i)32-s + (0.366 + 0.366i)40-s + 1.41i·41-s + ⋯ |
L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.866 + 0.499i)4-s − 0.517·5-s + (−0.707 − 0.707i)8-s + (0.499 + 0.133i)10-s − 1.41i·11-s − i·13-s + (0.500 + 0.866i)16-s + (−0.448 − 0.258i)20-s + (−0.366 + 1.36i)22-s − 0.732·25-s + (−0.258 + 0.965i)26-s + (−0.258 − 0.965i)32-s + (0.366 + 0.366i)40-s + 1.41i·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4379435628\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4379435628\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.965 + 0.258i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 + 0.517T + T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + 1.41iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - 1.41iT - T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + 1.93T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + 0.517iT - T^{2} \) |
| 61 | \( 1 + iT - T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - 0.517T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + 2iT - T^{2} \) |
| 83 | \( 1 + 1.93iT - T^{2} \) |
| 89 | \( 1 + 0.517iT - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.429814449050923917025900104466, −8.199244924915525586601679884313, −7.50650883930940365179253509249, −6.45825309892905759833878622637, −5.90328116194096114310611705525, −4.76904950529658229467527293226, −3.36046915001331098781579109507, −3.18354007348315695390409528052, −1.70597996377480035149156703898, −0.37573271514717903146975070029,
1.56540321045556583297649665411, 2.36442206181223786544943220764, 3.69372141021466191245798097654, 4.63043696915266080993265344278, 5.50769672886503043122183789893, 6.69134494004178227279862770094, 6.96090587824462308778936078069, 7.85528876826953180953670612233, 8.403894440026969263263566026821, 9.408727243425443455294109681400