L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + 0.517·5-s + (0.707 + 0.707i)8-s + (0.499 + 0.133i)10-s + 1.41i·11-s − i·13-s + (0.500 + 0.866i)16-s + (0.448 + 0.258i)20-s + (−0.366 + 1.36i)22-s − 0.732·25-s + (0.258 − 0.965i)26-s + (0.258 + 0.965i)32-s + (0.366 + 0.366i)40-s − 1.41i·41-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + 0.517·5-s + (0.707 + 0.707i)8-s + (0.499 + 0.133i)10-s + 1.41i·11-s − i·13-s + (0.500 + 0.866i)16-s + (0.448 + 0.258i)20-s + (−0.366 + 1.36i)22-s − 0.732·25-s + (0.258 − 0.965i)26-s + (0.258 + 0.965i)32-s + (0.366 + 0.366i)40-s − 1.41i·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.484292187\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.484292187\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 - 0.258i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 - 0.517T + T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - 1.41iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + 1.41iT - T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 - 1.93T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - 0.517iT - T^{2} \) |
| 61 | \( 1 + iT - T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + 0.517T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + 2iT - T^{2} \) |
| 83 | \( 1 - 1.93iT - T^{2} \) |
| 89 | \( 1 - 0.517iT - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.058485176878098029211367290214, −8.044024529312454462370458196507, −7.42054882081458120179268231687, −6.74248279079678015072820137058, −5.84990749280098790861767953013, −5.25864017615014487834302717828, −4.45811443661537610468070615506, −3.58688824961936792059569258256, −2.54044028150459939190878835658, −1.74587126767127505128596675033,
1.32302424600201149528249182834, 2.36898749830258388135025429498, 3.29317436772464335521652662864, 4.10495012970375627069854658311, 4.99552098727730720601281669841, 5.87588341962075707133259459309, 6.28962217117895485586077742455, 7.13878511558481328604910386302, 8.091983256007316529518430869520, 8.967045474670840692881657949905