Properties

Label 2-2808-1.1-c1-0-38
Degree $2$
Conductor $2808$
Sign $-1$
Analytic cond. $22.4219$
Root an. cond. $4.73518$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.61·5-s − 4.23·7-s − 3.61·11-s + 13-s − 3.85·17-s + 7.32·19-s + 2.85·23-s + 1.85·25-s + 29-s − 2·31-s − 11.0·35-s − 37-s + 6.23·41-s − 10.0·43-s − 9.85·47-s + 10.9·49-s − 1.38·53-s − 9.47·55-s − 7.94·59-s − 10.2·61-s + 2.61·65-s − 10.3·67-s + 3.70·71-s − 11.5·73-s + 15.3·77-s − 14.8·79-s − 17.1·83-s + ⋯
L(s)  = 1  + 1.17·5-s − 1.60·7-s − 1.09·11-s + 0.277·13-s − 0.934·17-s + 1.68·19-s + 0.595·23-s + 0.370·25-s + 0.185·29-s − 0.359·31-s − 1.87·35-s − 0.164·37-s + 0.973·41-s − 1.53·43-s − 1.43·47-s + 1.56·49-s − 0.189·53-s − 1.27·55-s − 1.03·59-s − 1.31·61-s + 0.324·65-s − 1.26·67-s + 0.440·71-s − 1.35·73-s + 1.74·77-s − 1.67·79-s − 1.88·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2808\)    =    \(2^{3} \cdot 3^{3} \cdot 13\)
Sign: $-1$
Analytic conductor: \(22.4219\)
Root analytic conductor: \(4.73518\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 2.61T + 5T^{2} \)
7 \( 1 + 4.23T + 7T^{2} \)
11 \( 1 + 3.61T + 11T^{2} \)
17 \( 1 + 3.85T + 17T^{2} \)
19 \( 1 - 7.32T + 19T^{2} \)
23 \( 1 - 2.85T + 23T^{2} \)
29 \( 1 - T + 29T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 + T + 37T^{2} \)
41 \( 1 - 6.23T + 41T^{2} \)
43 \( 1 + 10.0T + 43T^{2} \)
47 \( 1 + 9.85T + 47T^{2} \)
53 \( 1 + 1.38T + 53T^{2} \)
59 \( 1 + 7.94T + 59T^{2} \)
61 \( 1 + 10.2T + 61T^{2} \)
67 \( 1 + 10.3T + 67T^{2} \)
71 \( 1 - 3.70T + 71T^{2} \)
73 \( 1 + 11.5T + 73T^{2} \)
79 \( 1 + 14.8T + 79T^{2} \)
83 \( 1 + 17.1T + 83T^{2} \)
89 \( 1 - 7.70T + 89T^{2} \)
97 \( 1 + 1.52T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.609241416722120224802679466631, −7.50772884323708461374972509293, −6.81745747453345634149257496758, −6.05238719207486493032957331064, −5.53377064616618656807797377685, −4.61106039986949671618856297549, −3.19897331917399200934420931823, −2.84489252170349020646264198688, −1.58756337157089266736641612824, 0, 1.58756337157089266736641612824, 2.84489252170349020646264198688, 3.19897331917399200934420931823, 4.61106039986949671618856297549, 5.53377064616618656807797377685, 6.05238719207486493032957331064, 6.81745747453345634149257496758, 7.50772884323708461374972509293, 8.609241416722120224802679466631

Graph of the $Z$-function along the critical line