L(s) = 1 | + 3.23i·3-s + i·7-s − 7.47·9-s + 0.236·11-s + 1.23i·13-s − 2.47i·17-s − 4.47·19-s − 3.23·21-s − 6.23i·23-s − 14.4i·27-s − 5·29-s − 3.70·31-s + 0.763i·33-s − 3i·37-s − 4.00·39-s + ⋯ |
L(s) = 1 | + 1.86i·3-s + 0.377i·7-s − 2.49·9-s + 0.0711·11-s + 0.342i·13-s − 0.599i·17-s − 1.02·19-s − 0.706·21-s − 1.30i·23-s − 2.78i·27-s − 0.928·29-s − 0.666·31-s + 0.132i·33-s − 0.493i·37-s − 0.640·39-s + ⋯ |
Λ(s)=(=(2800s/2ΓC(s)L(s)(0.447+0.894i)Λ(2−s)
Λ(s)=(=(2800s/2ΓC(s+1/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2800
= 24⋅52⋅7
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
22.3581 |
Root analytic conductor: |
4.72843 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2800(449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2800, ( :1/2), 0.447+0.894i)
|
Particular Values
L(1) |
≈ |
0.1397718465 |
L(21) |
≈ |
0.1397718465 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 7 | 1−iT |
good | 3 | 1−3.23iT−3T2 |
| 11 | 1−0.236T+11T2 |
| 13 | 1−1.23iT−13T2 |
| 17 | 1+2.47iT−17T2 |
| 19 | 1+4.47T+19T2 |
| 23 | 1+6.23iT−23T2 |
| 29 | 1+5T+29T2 |
| 31 | 1+3.70T+31T2 |
| 37 | 1+3iT−37T2 |
| 41 | 1−4.76T+41T2 |
| 43 | 1+1.76iT−43T2 |
| 47 | 1+2iT−47T2 |
| 53 | 1−8.47iT−53T2 |
| 59 | 1−11.7T+59T2 |
| 61 | 1+9.70T+61T2 |
| 67 | 1+4.23iT−67T2 |
| 71 | 1+8.70T+71T2 |
| 73 | 1+8.76iT−73T2 |
| 79 | 1+11.1T+79T2 |
| 83 | 1−7.70iT−83T2 |
| 89 | 1+17.2T+89T2 |
| 97 | 1+5.23iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.921952498810517910930307344427, −8.283541047884558335481791244563, −7.13362542137320029036728186546, −6.05616830021155433746266937816, −5.47942157351040370949303088165, −4.52485772829227384204003152822, −4.13144706755480360444829486602, −3.11771625041123512885857908301, −2.24949752254809086456957177626, −0.04413071265307839223630961030,
1.27178433283752652936136872820, 2.00832736100600395018865565229, 3.04953882838238640811421960804, 4.06221795813139764516577667612, 5.45920589556857131676084899165, 5.98479716112337461782433213735, 6.82876511315749359168968123401, 7.36389882689012113726433269499, 8.036929703147324235629660299509, 8.616607872958680640775885536164