Properties

Label 2-2800-5.4-c1-0-39
Degree $2$
Conductor $2800$
Sign $0.447 + 0.894i$
Analytic cond. $22.3581$
Root an. cond. $4.72843$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.23i·3-s + i·7-s − 7.47·9-s + 0.236·11-s + 1.23i·13-s − 2.47i·17-s − 4.47·19-s − 3.23·21-s − 6.23i·23-s − 14.4i·27-s − 5·29-s − 3.70·31-s + 0.763i·33-s − 3i·37-s − 4.00·39-s + ⋯
L(s)  = 1  + 1.86i·3-s + 0.377i·7-s − 2.49·9-s + 0.0711·11-s + 0.342i·13-s − 0.599i·17-s − 1.02·19-s − 0.706·21-s − 1.30i·23-s − 2.78i·27-s − 0.928·29-s − 0.666·31-s + 0.132i·33-s − 0.493i·37-s − 0.640·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2800\)    =    \(2^{4} \cdot 5^{2} \cdot 7\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(22.3581\)
Root analytic conductor: \(4.72843\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2800} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2800,\ (\ :1/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1397718465\)
\(L(\frac12)\) \(\approx\) \(0.1397718465\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - iT \)
good3 \( 1 - 3.23iT - 3T^{2} \)
11 \( 1 - 0.236T + 11T^{2} \)
13 \( 1 - 1.23iT - 13T^{2} \)
17 \( 1 + 2.47iT - 17T^{2} \)
19 \( 1 + 4.47T + 19T^{2} \)
23 \( 1 + 6.23iT - 23T^{2} \)
29 \( 1 + 5T + 29T^{2} \)
31 \( 1 + 3.70T + 31T^{2} \)
37 \( 1 + 3iT - 37T^{2} \)
41 \( 1 - 4.76T + 41T^{2} \)
43 \( 1 + 1.76iT - 43T^{2} \)
47 \( 1 + 2iT - 47T^{2} \)
53 \( 1 - 8.47iT - 53T^{2} \)
59 \( 1 - 11.7T + 59T^{2} \)
61 \( 1 + 9.70T + 61T^{2} \)
67 \( 1 + 4.23iT - 67T^{2} \)
71 \( 1 + 8.70T + 71T^{2} \)
73 \( 1 + 8.76iT - 73T^{2} \)
79 \( 1 + 11.1T + 79T^{2} \)
83 \( 1 - 7.70iT - 83T^{2} \)
89 \( 1 + 17.2T + 89T^{2} \)
97 \( 1 + 5.23iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.921952498810517910930307344427, −8.283541047884558335481791244563, −7.13362542137320029036728186546, −6.05616830021155433746266937816, −5.47942157351040370949303088165, −4.52485772829227384204003152822, −4.13144706755480360444829486602, −3.11771625041123512885857908301, −2.24949752254809086456957177626, −0.04413071265307839223630961030, 1.27178433283752652936136872820, 2.00832736100600395018865565229, 3.04953882838238640811421960804, 4.06221795813139764516577667612, 5.45920589556857131676084899165, 5.98479716112337461782433213735, 6.82876511315749359168968123401, 7.36389882689012113726433269499, 8.036929703147324235629660299509, 8.616607872958680640775885536164

Graph of the $Z$-function along the critical line