L(s) = 1 | − 2·3-s − 96·5-s + 49·7-s − 239·9-s − 720·11-s + 572·13-s + 192·15-s + 1.25e3·17-s − 94·19-s − 98·21-s + 96·23-s + 6.09e3·25-s + 964·27-s − 4.37e3·29-s − 6.24e3·31-s + 1.44e3·33-s − 4.70e3·35-s − 1.07e4·37-s − 1.14e3·39-s + 1.20e4·41-s − 9.16e3·43-s + 2.29e4·45-s − 2.58e4·47-s + 2.40e3·49-s − 2.50e3·51-s + 1.01e3·53-s + 6.91e4·55-s + ⋯ |
L(s) = 1 | − 0.128·3-s − 1.71·5-s + 0.377·7-s − 0.983·9-s − 1.79·11-s + 0.938·13-s + 0.220·15-s + 1.05·17-s − 0.0597·19-s − 0.0484·21-s + 0.0378·23-s + 1.94·25-s + 0.254·27-s − 0.965·29-s − 1.16·31-s + 0.230·33-s − 0.649·35-s − 1.29·37-s − 0.120·39-s + 1.11·41-s − 0.755·43-s + 1.68·45-s − 1.70·47-s + 1/7·49-s − 0.135·51-s + 0.0495·53-s + 3.08·55-s + ⋯ |
Λ(s)=(=(28s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(28s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−p2T |
good | 3 | 1+2T+p5T2 |
| 5 | 1+96T+p5T2 |
| 11 | 1+720T+p5T2 |
| 13 | 1−44pT+p5T2 |
| 17 | 1−1254T+p5T2 |
| 19 | 1+94T+p5T2 |
| 23 | 1−96T+p5T2 |
| 29 | 1+4374T+p5T2 |
| 31 | 1+6244T+p5T2 |
| 37 | 1+10798T+p5T2 |
| 41 | 1−12006T+p5T2 |
| 43 | 1+9160T+p5T2 |
| 47 | 1+25836T+p5T2 |
| 53 | 1−1014T+p5T2 |
| 59 | 1−1242T+p5T2 |
| 61 | 1−7592T+p5T2 |
| 67 | 1−41132T+p5T2 |
| 71 | 1+37632T+p5T2 |
| 73 | 1+13438T+p5T2 |
| 79 | 1−6248T+p5T2 |
| 83 | 1+25254T+p5T2 |
| 89 | 1+45126T+p5T2 |
| 97 | 1−107222T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.66460879568356725976406438718, −14.56727787606432360931467156002, −12.89076813217567077613700172951, −11.58112929535376601244632812409, −10.75986348281136906360165818499, −8.434082554525968076475551344576, −7.62447871447066040952538120986, −5.31965875775595161984552193376, −3.40240128430237200615070717741, 0,
3.40240128430237200615070717741, 5.31965875775595161984552193376, 7.62447871447066040952538120986, 8.434082554525968076475551344576, 10.75986348281136906360165818499, 11.58112929535376601244632812409, 12.89076813217567077613700172951, 14.56727787606432360931467156002, 15.66460879568356725976406438718