Properties

Label 2-28-1.1-c5-0-0
Degree $2$
Conductor $28$
Sign $1$
Analytic cond. $4.49074$
Root an. cond. $2.11913$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 26·3-s + 16·5-s − 49·7-s + 433·9-s + 8·11-s + 684·13-s + 416·15-s − 2.21e3·17-s − 2.69e3·19-s − 1.27e3·21-s + 3.34e3·23-s − 2.86e3·25-s + 4.94e3·27-s − 3.25e3·29-s + 4.78e3·31-s + 208·33-s − 784·35-s − 1.14e4·37-s + 1.77e4·39-s + 1.33e4·41-s − 928·43-s + 6.92e3·45-s + 1.21e3·47-s + 2.40e3·49-s − 5.76e4·51-s + 1.31e4·53-s + 128·55-s + ⋯
L(s)  = 1  + 1.66·3-s + 0.286·5-s − 0.377·7-s + 1.78·9-s + 0.0199·11-s + 1.12·13-s + 0.477·15-s − 1.86·17-s − 1.71·19-s − 0.630·21-s + 1.31·23-s − 0.918·25-s + 1.30·27-s − 0.718·29-s + 0.894·31-s + 0.0332·33-s − 0.108·35-s − 1.37·37-s + 1.87·39-s + 1.24·41-s − 0.0765·43-s + 0.510·45-s + 0.0800·47-s + 1/7·49-s − 3.10·51-s + 0.641·53-s + 0.00570·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(28\)    =    \(2^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(4.49074\)
Root analytic conductor: \(2.11913\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 28,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.375874587\)
\(L(\frac12)\) \(\approx\) \(2.375874587\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + p^{2} T \)
good3 \( 1 - 26 T + p^{5} T^{2} \)
5 \( 1 - 16 T + p^{5} T^{2} \)
11 \( 1 - 8 T + p^{5} T^{2} \)
13 \( 1 - 684 T + p^{5} T^{2} \)
17 \( 1 + 2218 T + p^{5} T^{2} \)
19 \( 1 + 142 p T + p^{5} T^{2} \)
23 \( 1 - 3344 T + p^{5} T^{2} \)
29 \( 1 + 3254 T + p^{5} T^{2} \)
31 \( 1 - 4788 T + p^{5} T^{2} \)
37 \( 1 + 310 p T + p^{5} T^{2} \)
41 \( 1 - 13350 T + p^{5} T^{2} \)
43 \( 1 + 928 T + p^{5} T^{2} \)
47 \( 1 - 1212 T + p^{5} T^{2} \)
53 \( 1 - 13110 T + p^{5} T^{2} \)
59 \( 1 - 34702 T + p^{5} T^{2} \)
61 \( 1 + 1032 T + p^{5} T^{2} \)
67 \( 1 - 10108 T + p^{5} T^{2} \)
71 \( 1 - 62720 T + p^{5} T^{2} \)
73 \( 1 + 18926 T + p^{5} T^{2} \)
79 \( 1 - 11400 T + p^{5} T^{2} \)
83 \( 1 - 88958 T + p^{5} T^{2} \)
89 \( 1 - 19722 T + p^{5} T^{2} \)
97 \( 1 - 17062 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.75091300029627238404180851564, −14.96456783650792418454325624854, −13.59293478606349901112780335961, −13.04267118646930709050283206856, −10.79950993983158190076935110077, −9.206021531720503906539246669874, −8.439833948633120338922246953551, −6.67692715171034320407584043685, −3.95791997940940384003663737110, −2.24537971834612380657569247966, 2.24537971834612380657569247966, 3.95791997940940384003663737110, 6.67692715171034320407584043685, 8.439833948633120338922246953551, 9.206021531720503906539246669874, 10.79950993983158190076935110077, 13.04267118646930709050283206856, 13.59293478606349901112780335961, 14.96456783650792418454325624854, 15.75091300029627238404180851564

Graph of the $Z$-function along the critical line