Properties

Label 2-28-1.1-c3-0-1
Degree $2$
Conductor $28$
Sign $-1$
Analytic cond. $1.65205$
Root an. cond. $1.28532$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10·3-s − 8·5-s − 7·7-s + 73·9-s − 40·11-s − 12·13-s + 80·15-s − 58·17-s + 26·19-s + 70·21-s − 64·23-s − 61·25-s − 460·27-s − 62·29-s + 252·31-s + 400·33-s + 56·35-s + 26·37-s + 120·39-s + 6·41-s + 416·43-s − 584·45-s − 396·47-s + 49·49-s + 580·51-s − 450·53-s + 320·55-s + ⋯
L(s)  = 1  − 1.92·3-s − 0.715·5-s − 0.377·7-s + 2.70·9-s − 1.09·11-s − 0.256·13-s + 1.37·15-s − 0.827·17-s + 0.313·19-s + 0.727·21-s − 0.580·23-s − 0.487·25-s − 3.27·27-s − 0.397·29-s + 1.46·31-s + 2.11·33-s + 0.270·35-s + 0.115·37-s + 0.492·39-s + 0.0228·41-s + 1.47·43-s − 1.93·45-s − 1.22·47-s + 1/7·49-s + 1.59·51-s − 1.16·53-s + 0.784·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(28\)    =    \(2^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(1.65205\)
Root analytic conductor: \(1.28532\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 28,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + p T \)
good3 \( 1 + 10 T + p^{3} T^{2} \)
5 \( 1 + 8 T + p^{3} T^{2} \)
11 \( 1 + 40 T + p^{3} T^{2} \)
13 \( 1 + 12 T + p^{3} T^{2} \)
17 \( 1 + 58 T + p^{3} T^{2} \)
19 \( 1 - 26 T + p^{3} T^{2} \)
23 \( 1 + 64 T + p^{3} T^{2} \)
29 \( 1 + 62 T + p^{3} T^{2} \)
31 \( 1 - 252 T + p^{3} T^{2} \)
37 \( 1 - 26 T + p^{3} T^{2} \)
41 \( 1 - 6 T + p^{3} T^{2} \)
43 \( 1 - 416 T + p^{3} T^{2} \)
47 \( 1 + 396 T + p^{3} T^{2} \)
53 \( 1 + 450 T + p^{3} T^{2} \)
59 \( 1 - 274 T + p^{3} T^{2} \)
61 \( 1 + 576 T + p^{3} T^{2} \)
67 \( 1 + 476 T + p^{3} T^{2} \)
71 \( 1 + 448 T + p^{3} T^{2} \)
73 \( 1 + 158 T + p^{3} T^{2} \)
79 \( 1 + 936 T + p^{3} T^{2} \)
83 \( 1 - 530 T + p^{3} T^{2} \)
89 \( 1 + 390 T + p^{3} T^{2} \)
97 \( 1 - 214 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.07092329469791305387008900168, −15.58857037284035452257426767028, −13.17493072879754927160972315449, −12.10544057288673767820092826412, −11.14271482983331810332690506926, −10.02979999855798524146877493937, −7.53741591071156022841236447136, −6.07979688505861171575806799387, −4.59778668307750420844259673078, 0, 4.59778668307750420844259673078, 6.07979688505861171575806799387, 7.53741591071156022841236447136, 10.02979999855798524146877493937, 11.14271482983331810332690506926, 12.10544057288673767820092826412, 13.17493072879754927160972315449, 15.58857037284035452257426767028, 16.07092329469791305387008900168

Graph of the $Z$-function along the critical line