L(s) = 1 | − 1.43i·2-s − 0.561i·3-s + 5.93·4-s − 0.807·6-s − 31.0i·7-s − 20.0i·8-s + 26.6·9-s − 11·11-s − 3.33i·12-s + 45.6i·13-s − 44.6·14-s + 18.6·16-s − 40.4i·17-s − 38.3i·18-s − 91.2·19-s + ⋯ |
L(s) = 1 | − 0.508i·2-s − 0.108i·3-s + 0.741·4-s − 0.0549·6-s − 1.67i·7-s − 0.885i·8-s + 0.988·9-s − 0.301·11-s − 0.0801i·12-s + 0.973i·13-s − 0.852·14-s + 0.290·16-s − 0.577i·17-s − 0.502i·18-s − 1.10·19-s + ⋯ |
Λ(s)=(=(275s/2ΓC(s)L(s)(−0.447+0.894i)Λ(4−s)
Λ(s)=(=(275s/2ΓC(s+3/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
275
= 52⋅11
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
16.2255 |
Root analytic conductor: |
4.02809 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ275(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 275, ( :3/2), −0.447+0.894i)
|
Particular Values
L(2) |
≈ |
2.180296465 |
L(21) |
≈ |
2.180296465 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1+11T |
good | 2 | 1+1.43iT−8T2 |
| 3 | 1+0.561iT−27T2 |
| 7 | 1+31.0iT−343T2 |
| 13 | 1−45.6iT−2.19e3T2 |
| 17 | 1+40.4iT−4.91e3T2 |
| 19 | 1+91.2T+6.85e3T2 |
| 23 | 1+32.2iT−1.21e4T2 |
| 29 | 1+35.8T+2.43e4T2 |
| 31 | 1−311.T+2.97e4T2 |
| 37 | 1+368.iT−5.06e4T2 |
| 41 | 1+393.T+6.89e4T2 |
| 43 | 1−351.iT−7.95e4T2 |
| 47 | 1+230.iT−1.03e5T2 |
| 53 | 1+406.iT−1.48e5T2 |
| 59 | 1−368.T+2.05e5T2 |
| 61 | 1+322.T+2.26e5T2 |
| 67 | 1−442.iT−3.00e5T2 |
| 71 | 1−667.T+3.57e5T2 |
| 73 | 1−84.5iT−3.89e5T2 |
| 79 | 1−411.T+4.93e5T2 |
| 83 | 1−835.iT−5.71e5T2 |
| 89 | 1−799.T+7.04e5T2 |
| 97 | 1−768.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.02702119689305835611705154375, −10.34223296999676054283750595817, −9.673303994914895848570034510505, −8.027931237161871424392257441560, −6.98980004613168497416407331010, −6.61284201340044846671770821204, −4.56920389883350203371250224072, −3.73225685174482483524338269278, −2.09739132238555092272592116348, −0.832830105290406522855055924617,
1.87125566795404075754337128300, 3.00890095887306138394614572558, 4.87008820175990593003947564022, 5.88275957735464605953974101622, 6.66123507156817981216777913513, 7.980775333456928087718060525912, 8.583095001214185576224583760089, 9.951403748914494922225129515742, 10.74527572939234908913562845972, 11.94794193790170820643664275543