L(s) = 1 | − 1.43i·2-s − 0.561i·3-s + 5.93·4-s − 0.807·6-s − 31.0i·7-s − 20.0i·8-s + 26.6·9-s − 11·11-s − 3.33i·12-s + 45.6i·13-s − 44.6·14-s + 18.6·16-s − 40.4i·17-s − 38.3i·18-s − 91.2·19-s + ⋯ |
L(s) = 1 | − 0.508i·2-s − 0.108i·3-s + 0.741·4-s − 0.0549·6-s − 1.67i·7-s − 0.885i·8-s + 0.988·9-s − 0.301·11-s − 0.0801i·12-s + 0.973i·13-s − 0.852·14-s + 0.290·16-s − 0.577i·17-s − 0.502i·18-s − 1.10·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.180296465\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.180296465\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + 11T \) |
good | 2 | \( 1 + 1.43iT - 8T^{2} \) |
| 3 | \( 1 + 0.561iT - 27T^{2} \) |
| 7 | \( 1 + 31.0iT - 343T^{2} \) |
| 13 | \( 1 - 45.6iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 40.4iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 91.2T + 6.85e3T^{2} \) |
| 23 | \( 1 + 32.2iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 35.8T + 2.43e4T^{2} \) |
| 31 | \( 1 - 311.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 368. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 393.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 351. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 230. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 406. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 368.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 322.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 442. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 667.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 84.5iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 411.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 835. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 799.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 768. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.02702119689305835611705154375, −10.34223296999676054283750595817, −9.673303994914895848570034510505, −8.027931237161871424392257441560, −6.98980004613168497416407331010, −6.61284201340044846671770821204, −4.56920389883350203371250224072, −3.73225685174482483524338269278, −2.09739132238555092272592116348, −0.832830105290406522855055924617,
1.87125566795404075754337128300, 3.00890095887306138394614572558, 4.87008820175990593003947564022, 5.88275957735464605953974101622, 6.66123507156817981216777913513, 7.980775333456928087718060525912, 8.583095001214185576224583760089, 9.951403748914494922225129515742, 10.74527572939234908913562845972, 11.94794193790170820643664275543