L(s) = 1 | + 5.56i·2-s − 3.56i·3-s − 22.9·4-s + 19.8·6-s − 6.05i·7-s − 83.0i·8-s + 14.3·9-s − 11·11-s + 81.6i·12-s − 4.38i·13-s + 33.6·14-s + 278.·16-s + 110. i·17-s + 79.6i·18-s + 94.2·19-s + ⋯ |
L(s) = 1 | + 1.96i·2-s − 0.685i·3-s − 2.86·4-s + 1.34·6-s − 0.326i·7-s − 3.66i·8-s + 0.530·9-s − 0.301·11-s + 1.96i·12-s − 0.0935i·13-s + 0.642·14-s + 4.34·16-s + 1.57i·17-s + 1.04i·18-s + 1.13·19-s + ⋯ |
Λ(s)=(=(275s/2ΓC(s)L(s)(−0.447−0.894i)Λ(4−s)
Λ(s)=(=(275s/2ΓC(s+3/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
275
= 52⋅11
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
16.2255 |
Root analytic conductor: |
4.02809 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ275(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 275, ( :3/2), −0.447−0.894i)
|
Particular Values
L(2) |
≈ |
1.469159886 |
L(21) |
≈ |
1.469159886 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1+11T |
good | 2 | 1−5.56iT−8T2 |
| 3 | 1+3.56iT−27T2 |
| 7 | 1+6.05iT−343T2 |
| 13 | 1+4.38iT−2.19e3T2 |
| 17 | 1−110.iT−4.91e3T2 |
| 19 | 1−94.2T+6.85e3T2 |
| 23 | 1−15.7iT−1.21e4T2 |
| 29 | 1−256.T+2.43e4T2 |
| 31 | 1+170.T+2.97e4T2 |
| 37 | 1−190.iT−5.06e4T2 |
| 41 | 1−249.T+6.89e4T2 |
| 43 | 1−291.iT−7.95e4T2 |
| 47 | 1+182.iT−1.03e5T2 |
| 53 | 1+289.iT−1.48e5T2 |
| 59 | 1+282.T+2.05e5T2 |
| 61 | 1−167.T+2.26e5T2 |
| 67 | 1−176.iT−3.00e5T2 |
| 71 | 1−919.T+3.57e5T2 |
| 73 | 1−154.iT−3.89e5T2 |
| 79 | 1−882.T+4.93e5T2 |
| 83 | 1−277.iT−5.71e5T2 |
| 89 | 1−977.T+7.04e5T2 |
| 97 | 1−1.10e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.30365211915230958156200862246, −10.41760033954673995833860973428, −9.536114399029200935513739095797, −8.316047063313988640208429015931, −7.73216574883631815875090944214, −6.85581944849055318227905035804, −6.08810398602743430818688444520, −4.96016855131287772733825271484, −3.80884362878297945976619025775, −1.00029397773553886878634320796,
0.818520054576956611350462280492, 2.41681227933541063152020160258, 3.46382616359390149130769786299, 4.60183254571979644935984580149, 5.34444877455118688922572436657, 7.56588585431064936082739177274, 9.008953571912181824933498590885, 9.475432262649928472834336641997, 10.33821796048451263676251227891, 11.06684119445269040153759689065