L(s) = 1 | + (2.31 − 2.31i)2-s + (0.535 + 0.535i)3-s − 6.73i·4-s + 2.48·6-s + (2.25 − 2.25i)7-s + (−6.32 − 6.32i)8-s − 8.42i·9-s + 3.31·11-s + (3.60 − 3.60i)12-s + (−7.80 − 7.80i)13-s − 10.4i·14-s − 2.37·16-s + (6.60 − 6.60i)17-s + (−19.5 − 19.5i)18-s + 14.8i·19-s + ⋯ |
L(s) = 1 | + (1.15 − 1.15i)2-s + (0.178 + 0.178i)3-s − 1.68i·4-s + 0.413·6-s + (0.322 − 0.322i)7-s + (−0.790 − 0.790i)8-s − 0.936i·9-s + 0.301·11-s + (0.300 − 0.300i)12-s + (−0.600 − 0.600i)13-s − 0.746i·14-s − 0.148·16-s + (0.388 − 0.388i)17-s + (−1.08 − 1.08i)18-s + 0.780i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.437 + 0.899i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.437 + 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.65891 - 2.65219i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.65891 - 2.65219i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 - 3.31T \) |
good | 2 | \( 1 + (-2.31 + 2.31i)T - 4iT^{2} \) |
| 3 | \( 1 + (-0.535 - 0.535i)T + 9iT^{2} \) |
| 7 | \( 1 + (-2.25 + 2.25i)T - 49iT^{2} \) |
| 13 | \( 1 + (7.80 + 7.80i)T + 169iT^{2} \) |
| 17 | \( 1 + (-6.60 + 6.60i)T - 289iT^{2} \) |
| 19 | \( 1 - 14.8iT - 361T^{2} \) |
| 23 | \( 1 + (6.20 + 6.20i)T + 529iT^{2} \) |
| 29 | \( 1 - 55.3iT - 841T^{2} \) |
| 31 | \( 1 - 7.07T + 961T^{2} \) |
| 37 | \( 1 + (22.2 - 22.2i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 36.8T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-50.8 - 50.8i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-45.9 + 45.9i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (5.18 + 5.18i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 - 94.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 102.T + 3.72e3T^{2} \) |
| 67 | \( 1 + (16.0 - 16.0i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 12.0T + 5.04e3T^{2} \) |
| 73 | \( 1 + (86.2 + 86.2i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 76.3iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (85.3 + 85.3i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 3.80iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-33.8 + 33.8i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.66688815990990489418617480598, −10.51781241011726802081063623087, −9.944363188392197417294816500698, −8.714045727225361229623540656247, −7.30074321035356445883425817192, −5.92060485924030518909459997742, −4.85763826825393482000281793903, −3.80207140956581736346715739327, −2.88874390002670120697812287687, −1.23839852668315984237716646297,
2.30947563563979532927108027682, 3.98039752538977825672583443558, 4.95645395908749390891273453487, 5.85193303242710105467622673409, 6.99520755467412625276510131088, 7.74805057898046350953195211542, 8.679057569176658835634994263814, 10.03610334443684071200503220992, 11.39435362804233723750096814446, 12.25717556506491997559469307462