L(s) = 1 | + 3.91·5-s + 4.32·7-s + 0.0827·11-s − 7.02·13-s − 5.10·17-s + 19-s + 7.83·23-s + 10.3·25-s − 2.81·29-s + 6·31-s + 16.9·35-s + 4·37-s + 1.02·41-s − 0.324·43-s + 6.73·47-s + 11.6·49-s + 8.85·53-s + 0.324·55-s − 14.0·59-s + 9.34·61-s − 27.5·65-s − 1.62·67-s − 1.62·71-s + 3.30·73-s + 0.357·77-s + 13.0·79-s + 6.81·83-s + ⋯ |
L(s) = 1 | + 1.75·5-s + 1.63·7-s + 0.0249·11-s − 1.94·13-s − 1.23·17-s + 0.229·19-s + 1.63·23-s + 2.06·25-s − 0.522·29-s + 1.07·31-s + 2.86·35-s + 0.657·37-s + 0.159·41-s − 0.0494·43-s + 0.981·47-s + 1.67·49-s + 1.21·53-s + 0.0436·55-s − 1.82·59-s + 1.19·61-s − 3.41·65-s − 0.198·67-s − 0.193·71-s + 0.386·73-s + 0.0407·77-s + 1.46·79-s + 0.747·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.983265400\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.983265400\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 5 | \( 1 - 3.91T + 5T^{2} \) |
| 7 | \( 1 - 4.32T + 7T^{2} \) |
| 11 | \( 1 - 0.0827T + 11T^{2} \) |
| 13 | \( 1 + 7.02T + 13T^{2} \) |
| 17 | \( 1 + 5.10T + 17T^{2} \) |
| 23 | \( 1 - 7.83T + 23T^{2} \) |
| 29 | \( 1 + 2.81T + 29T^{2} \) |
| 31 | \( 1 - 6T + 31T^{2} \) |
| 37 | \( 1 - 4T + 37T^{2} \) |
| 41 | \( 1 - 1.02T + 41T^{2} \) |
| 43 | \( 1 + 0.324T + 43T^{2} \) |
| 47 | \( 1 - 6.73T + 47T^{2} \) |
| 53 | \( 1 - 8.85T + 53T^{2} \) |
| 59 | \( 1 + 14.0T + 59T^{2} \) |
| 61 | \( 1 - 9.34T + 61T^{2} \) |
| 67 | \( 1 + 1.62T + 67T^{2} \) |
| 71 | \( 1 + 1.62T + 71T^{2} \) |
| 73 | \( 1 - 3.30T + 73T^{2} \) |
| 79 | \( 1 - 13.0T + 79T^{2} \) |
| 83 | \( 1 - 6.81T + 83T^{2} \) |
| 89 | \( 1 + 1.18T + 89T^{2} \) |
| 97 | \( 1 + 5.66T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.095693702764231281202287342497, −8.077003255782335735178960971750, −7.24326616131350711946539233495, −6.58898819943004994752953588830, −5.50543437638471305222165855940, −5.00783643288750836973173516488, −4.46709890171596283600504370853, −2.59237421122085810254751032225, −2.23499961388363756679796120648, −1.17122940397870743944205207966,
1.17122940397870743944205207966, 2.23499961388363756679796120648, 2.59237421122085810254751032225, 4.46709890171596283600504370853, 5.00783643288750836973173516488, 5.50543437638471305222165855940, 6.58898819943004994752953588830, 7.24326616131350711946539233495, 8.077003255782335735178960971750, 9.095693702764231281202287342497