Properties

Label 2-2736-1.1-c1-0-16
Degree $2$
Conductor $2736$
Sign $1$
Analytic cond. $21.8470$
Root an. cond. $4.67408$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.70·5-s + 4.70·7-s + 4.70·11-s + 6·13-s + 2.70·17-s − 19-s + 4·23-s + 2.29·25-s − 2·29-s − 9.40·31-s − 12.7·35-s − 3.40·37-s + 3.40·41-s − 10.1·43-s − 0.701·47-s + 15.1·49-s + 6·53-s − 12.7·55-s − 4·59-s + 1.29·61-s − 16.2·65-s + 12·67-s + 6.70·73-s + 22.1·77-s + 10.8·79-s − 10.8·83-s − 7.29·85-s + ⋯
L(s)  = 1  − 1.20·5-s + 1.77·7-s + 1.41·11-s + 1.66·13-s + 0.655·17-s − 0.229·19-s + 0.834·23-s + 0.459·25-s − 0.371·29-s − 1.68·31-s − 2.14·35-s − 0.559·37-s + 0.531·41-s − 1.54·43-s − 0.102·47-s + 2.15·49-s + 0.824·53-s − 1.71·55-s − 0.520·59-s + 0.166·61-s − 2.01·65-s + 1.46·67-s + 0.784·73-s + 2.51·77-s + 1.21·79-s − 1.18·83-s − 0.791·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2736\)    =    \(2^{4} \cdot 3^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(21.8470\)
Root analytic conductor: \(4.67408\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2736,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.211588571\)
\(L(\frac12)\) \(\approx\) \(2.211588571\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + 2.70T + 5T^{2} \)
7 \( 1 - 4.70T + 7T^{2} \)
11 \( 1 - 4.70T + 11T^{2} \)
13 \( 1 - 6T + 13T^{2} \)
17 \( 1 - 2.70T + 17T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 + 9.40T + 31T^{2} \)
37 \( 1 + 3.40T + 37T^{2} \)
41 \( 1 - 3.40T + 41T^{2} \)
43 \( 1 + 10.1T + 43T^{2} \)
47 \( 1 + 0.701T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 + 4T + 59T^{2} \)
61 \( 1 - 1.29T + 61T^{2} \)
67 \( 1 - 12T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 6.70T + 73T^{2} \)
79 \( 1 - 10.8T + 79T^{2} \)
83 \( 1 + 10.8T + 83T^{2} \)
89 \( 1 - 12.8T + 89T^{2} \)
97 \( 1 + 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.631340419532668056649987861946, −8.163241199022309603922342786487, −7.43932233232358196747629989360, −6.68932255664833789415208962646, −5.63465522142915149935223728988, −4.82933858274108458243299412201, −3.83944256472822148577496343454, −3.61821290788363792929502287498, −1.78932366113614628914885984326, −1.04398047849916943650448216363, 1.04398047849916943650448216363, 1.78932366113614628914885984326, 3.61821290788363792929502287498, 3.83944256472822148577496343454, 4.82933858274108458243299412201, 5.63465522142915149935223728988, 6.68932255664833789415208962646, 7.43932233232358196747629989360, 8.163241199022309603922342786487, 8.631340419532668056649987861946

Graph of the $Z$-function along the critical line