L(s) = 1 | − 2.70·5-s + 4.70·7-s + 4.70·11-s + 6·13-s + 2.70·17-s − 19-s + 4·23-s + 2.29·25-s − 2·29-s − 9.40·31-s − 12.7·35-s − 3.40·37-s + 3.40·41-s − 10.1·43-s − 0.701·47-s + 15.1·49-s + 6·53-s − 12.7·55-s − 4·59-s + 1.29·61-s − 16.2·65-s + 12·67-s + 6.70·73-s + 22.1·77-s + 10.8·79-s − 10.8·83-s − 7.29·85-s + ⋯ |
L(s) = 1 | − 1.20·5-s + 1.77·7-s + 1.41·11-s + 1.66·13-s + 0.655·17-s − 0.229·19-s + 0.834·23-s + 0.459·25-s − 0.371·29-s − 1.68·31-s − 2.14·35-s − 0.559·37-s + 0.531·41-s − 1.54·43-s − 0.102·47-s + 2.15·49-s + 0.824·53-s − 1.71·55-s − 0.520·59-s + 0.166·61-s − 2.01·65-s + 1.46·67-s + 0.784·73-s + 2.51·77-s + 1.21·79-s − 1.18·83-s − 0.791·85-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.211588571\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.211588571\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 5 | \( 1 + 2.70T + 5T^{2} \) |
| 7 | \( 1 - 4.70T + 7T^{2} \) |
| 11 | \( 1 - 4.70T + 11T^{2} \) |
| 13 | \( 1 - 6T + 13T^{2} \) |
| 17 | \( 1 - 2.70T + 17T^{2} \) |
| 23 | \( 1 - 4T + 23T^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 + 9.40T + 31T^{2} \) |
| 37 | \( 1 + 3.40T + 37T^{2} \) |
| 41 | \( 1 - 3.40T + 41T^{2} \) |
| 43 | \( 1 + 10.1T + 43T^{2} \) |
| 47 | \( 1 + 0.701T + 47T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + 4T + 59T^{2} \) |
| 61 | \( 1 - 1.29T + 61T^{2} \) |
| 67 | \( 1 - 12T + 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 6.70T + 73T^{2} \) |
| 79 | \( 1 - 10.8T + 79T^{2} \) |
| 83 | \( 1 + 10.8T + 83T^{2} \) |
| 89 | \( 1 - 12.8T + 89T^{2} \) |
| 97 | \( 1 + 6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.631340419532668056649987861946, −8.163241199022309603922342786487, −7.43932233232358196747629989360, −6.68932255664833789415208962646, −5.63465522142915149935223728988, −4.82933858274108458243299412201, −3.83944256472822148577496343454, −3.61821290788363792929502287498, −1.78932366113614628914885984326, −1.04398047849916943650448216363,
1.04398047849916943650448216363, 1.78932366113614628914885984326, 3.61821290788363792929502287498, 3.83944256472822148577496343454, 4.82933858274108458243299412201, 5.63465522142915149935223728988, 6.68932255664833789415208962646, 7.43932233232358196747629989360, 8.163241199022309603922342786487, 8.631340419532668056649987861946