L(s) = 1 | + 5-s + (−0.707 + 0.707i)9-s + i·17-s + 25-s + (1.70 + 0.707i)29-s + (0.707 + 1.70i)37-s + (−0.707 − 1.70i)41-s + (−0.707 + 0.707i)45-s + (0.707 + 0.707i)49-s + (−0.292 − 0.707i)61-s + (−0.707 − 1.70i)73-s − 1.00i·81-s + i·85-s − 1.41·89-s + (−0.707 + 0.292i)97-s + ⋯ |
L(s) = 1 | + 5-s + (−0.707 + 0.707i)9-s + i·17-s + 25-s + (1.70 + 0.707i)29-s + (0.707 + 1.70i)37-s + (−0.707 − 1.70i)41-s + (−0.707 + 0.707i)45-s + (0.707 + 0.707i)49-s + (−0.292 − 0.707i)61-s + (−0.707 − 1.70i)73-s − 1.00i·81-s + i·85-s − 1.41·89-s + (−0.707 + 0.292i)97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.825 - 0.564i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.825 - 0.564i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.397884951\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.397884951\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 17 | \( 1 - iT \) |
good | 3 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 7 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 29 | \( 1 + (-1.70 - 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 37 | \( 1 + (-0.707 - 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + (0.292 + 0.707i)T + (-0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + 1.41T + T^{2} \) |
| 97 | \( 1 + (0.707 - 0.292i)T + (0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.890444149952133524939383502231, −8.525244734265594132577717677777, −7.64554737562890441595990134533, −6.60933676677434535929817560393, −6.05322691876714162247291874712, −5.24324856974396468083967219713, −4.55778385258899669629483587980, −3.25371566233854301031448321883, −2.43290854611006110592312550452, −1.44005639849379349465709122429,
0.989736599639706829070217833027, 2.41856593008167393071279856405, 3.02495002883602578799739959943, 4.25562730228362038907602769009, 5.17718618850907817026705127049, 5.92139873378589822629124520942, 6.52730028796287571832979352493, 7.32100076912681053769279825539, 8.395504159502385641473322670605, 8.951477574332714184166493637776