L(s) = 1 | + (0.707 − 0.707i)5-s + (0.923 − 0.382i)9-s + (−1.30 − 1.30i)13-s + (0.707 + 0.707i)17-s − 1.00i·25-s + (0.923 + 0.617i)29-s + (−0.216 − 1.08i)37-s + (−0.923 − 1.38i)41-s + (0.382 − 0.923i)45-s + (−0.382 + 0.923i)49-s + (−0.292 + 0.707i)53-s + (−0.324 + 0.216i)61-s − 1.84·65-s + (1.38 + 0.923i)73-s + (0.707 − 0.707i)81-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)5-s + (0.923 − 0.382i)9-s + (−1.30 − 1.30i)13-s + (0.707 + 0.707i)17-s − 1.00i·25-s + (0.923 + 0.617i)29-s + (−0.216 − 1.08i)37-s + (−0.923 − 1.38i)41-s + (0.382 − 0.923i)45-s + (−0.382 + 0.923i)49-s + (−0.292 + 0.707i)53-s + (−0.324 + 0.216i)61-s − 1.84·65-s + (1.38 + 0.923i)73-s + (0.707 − 0.707i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.563 + 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.563 + 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.416416031\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.416416031\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 + (-0.707 - 0.707i)T \) |
good | 3 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 7 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 11 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 13 | \( 1 + (1.30 + 1.30i)T + iT^{2} \) |
| 19 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 23 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 29 | \( 1 + (-0.923 - 0.617i)T + (0.382 + 0.923i)T^{2} \) |
| 31 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 37 | \( 1 + (0.216 + 1.08i)T + (-0.923 + 0.382i)T^{2} \) |
| 41 | \( 1 + (0.923 + 1.38i)T + (-0.382 + 0.923i)T^{2} \) |
| 43 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (0.292 - 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 61 | \( 1 + (0.324 - 0.216i)T + (0.382 - 0.923i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 73 | \( 1 + (-1.38 - 0.923i)T + (0.382 + 0.923i)T^{2} \) |
| 79 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 83 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 + (-0.541 - 0.541i)T + iT^{2} \) |
| 97 | \( 1 + (1.08 - 1.63i)T + (-0.382 - 0.923i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.981246338655968000036735011238, −8.120902547495026440041278313424, −7.44488465144622084208581640822, −6.61335962295340219951583111744, −5.64929415145086432325291815036, −5.11721754562208857653718313507, −4.24493643227508757101450242144, −3.18494261634964738618873481785, −2.08567026394038673891412409414, −0.979706864441323239136964291577,
1.59986103969466442007789296709, 2.42191361111328973581852436707, 3.38356329856191473128101027456, 4.65171329555900484444839257394, 5.03741107360972722581949045486, 6.29961946115498009205340183991, 6.85260494566454495432979807494, 7.43745072568934262566985050730, 8.300098850824772468191190957953, 9.492632656871410790647631709823