L(s) = 1 | + i·5-s + 9-s + (1 − i)13-s + 17-s − 25-s + (−1 − i)29-s − 2·37-s + (1 + i)41-s + i·45-s + 49-s + (1 + i)53-s + (1 + i)61-s + (1 + i)65-s − 2i·73-s + 81-s + ⋯ |
L(s) = 1 | + i·5-s + 9-s + (1 − i)13-s + 17-s − 25-s + (−1 − i)29-s − 2·37-s + (1 + i)41-s + i·45-s + 49-s + (1 + i)53-s + (1 + i)61-s + (1 + i)65-s − 2i·73-s + 81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.908 - 0.417i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.908 - 0.417i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.404939374\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.404939374\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 17 | \( 1 - T \) |
good | 3 | \( 1 - T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 13 | \( 1 + (-1 + i)T - iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + (1 + i)T + iT^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + 2T + T^{2} \) |
| 41 | \( 1 + (-1 - i)T + iT^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (-1 - i)T + iT^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + (-1 - i)T + iT^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + 2iT - T^{2} \) |
| 79 | \( 1 - iT^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - 2iT - T^{2} \) |
| 97 | \( 1 + 2T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.155589715505141993223816173757, −8.092434028048474114462510920313, −7.56037783271574302540401520925, −6.86280728441470991658064943830, −5.98845411604239028902984261628, −5.38611241868065797509553994834, −4.05354031097896196905679301615, −3.51685098085963555151147663882, −2.50830483353623076227001140368, −1.26715928386523594445300281406,
1.19220562538788129583631887803, 1.95714710998196629949120086759, 3.65778200192572520820172544809, 4.06408123383585255785748351314, 5.14964872567129875927384556376, 5.69885941376731997094227815278, 6.84119285940158430457003546507, 7.36067437819611940183922758897, 8.398578331545730592680828757036, 8.897073763600607817927012277712