L(s) = 1 | + (0.707 − 0.707i)5-s + (−0.707 − 0.707i)9-s + 17-s − 1.00i·25-s + (−0.292 − 0.707i)29-s + (0.292 − 0.707i)37-s + (0.707 + 0.292i)41-s − 1.00·45-s + (0.707 − 0.707i)49-s + (−1.70 − 0.707i)61-s + (0.292 − 0.707i)73-s + 1.00i·81-s + (0.707 − 0.707i)85-s − 1.41·89-s + (1.70 + 0.707i)97-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)5-s + (−0.707 − 0.707i)9-s + 17-s − 1.00i·25-s + (−0.292 − 0.707i)29-s + (0.292 − 0.707i)37-s + (0.707 + 0.292i)41-s − 1.00·45-s + (0.707 − 0.707i)49-s + (−1.70 − 0.707i)61-s + (0.292 − 0.707i)73-s + 1.00i·81-s + (0.707 − 0.707i)85-s − 1.41·89-s + (1.70 + 0.707i)97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.459 + 0.888i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.459 + 0.888i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.301636962\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.301636962\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 - T \) |
good | 3 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 7 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (0.292 + 0.707i)T + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 37 | \( 1 + (-0.292 + 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (1.70 + 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.292 + 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + 1.41T + T^{2} \) |
| 97 | \( 1 + (-1.70 - 0.707i)T + (0.707 + 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.010275844677760397645446412559, −8.208660635630575427419174876723, −7.47792877977125140025574570143, −6.34046820862361939966362875761, −5.83962440630297102516430190224, −5.12953626658676884019744865256, −4.13225829399400577584894745529, −3.17096857010273153402944905809, −2.13128483244165077460597921015, −0.882787275241658337645694108300,
1.53861038056048456882100192906, 2.63913918993594566978374111139, 3.26072896951726343698648942184, 4.49344094820702679988357547944, 5.54842528167378875570602128409, 5.87439772164043135637811713996, 6.91835119052292757729467797294, 7.59028517298205246142587065404, 8.360885656673130256729429951906, 9.220826298384702226769421247434