L(s) = 1 | − 5-s + (0.707 + 0.707i)9-s + (−1.41 − 1.41i)13-s − i·17-s + 25-s + (1.70 − 0.707i)29-s + (−0.707 − 0.292i)37-s + (0.707 − 1.70i)41-s + (−0.707 − 0.707i)45-s + (−0.707 + 0.707i)49-s + 2·53-s + (0.292 − 0.707i)61-s + (1.41 + 1.41i)65-s + (−0.707 − 0.292i)73-s + 1.00i·81-s + ⋯ |
L(s) = 1 | − 5-s + (0.707 + 0.707i)9-s + (−1.41 − 1.41i)13-s − i·17-s + 25-s + (1.70 − 0.707i)29-s + (−0.707 − 0.292i)37-s + (0.707 − 1.70i)41-s + (−0.707 − 0.707i)45-s + (−0.707 + 0.707i)49-s + 2·53-s + (0.292 − 0.707i)61-s + (1.41 + 1.41i)65-s + (−0.707 − 0.292i)73-s + 1.00i·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.485 + 0.874i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.485 + 0.874i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8883163843\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8883163843\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 17 | \( 1 + iT \) |
good | 3 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 7 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 29 | \( 1 + (-1.70 + 0.707i)T + (0.707 - 0.707i)T^{2} \) |
| 31 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 37 | \( 1 + (0.707 + 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 + (-0.707 + 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 - 2T + T^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (-0.292 + 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 + 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + 1.41T + T^{2} \) |
| 97 | \( 1 + (-0.707 + 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.722420698607616026388977451556, −8.000338506581122850475748002374, −7.36466051324531273708460294943, −6.98952024841670398662781807929, −5.60345929453673047027248157024, −4.88265255485271481630236475307, −4.27713202818517893082327210097, −3.11584753542377717244738252194, −2.36494800697101746904166178124, −0.63293400464338781877074227959,
1.28881433105718145698145379969, 2.59246486607837320568654330098, 3.69710976540952117420044832179, 4.37908409587494497838246730407, 4.97781969579118755950067936075, 6.38924181066208914516467381354, 6.88601791224466732470424168499, 7.52425587527988150741834244515, 8.440770258831279094905349284827, 9.035634741323337758458389713749