L(s) = 1 | − 3-s + 5-s + 13-s − 15-s − 17-s + 19-s + 25-s + 27-s − 29-s + 31-s − 39-s − 47-s + 49-s + 51-s + 53-s − 57-s + 59-s − 61-s + 65-s + 71-s + 73-s − 75-s − 2·79-s − 81-s − 85-s + 87-s − 89-s + ⋯ |
L(s) = 1 | − 3-s + 5-s + 13-s − 15-s − 17-s + 19-s + 25-s + 27-s − 29-s + 31-s − 39-s − 47-s + 49-s + 51-s + 53-s − 57-s + 59-s − 61-s + 65-s + 71-s + 73-s − 75-s − 2·79-s − 81-s − 85-s + 87-s − 89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.049753143\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.049753143\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 17 | \( 1 + T \) |
good | 3 | \( 1 + T + T^{2} \) |
| 7 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( 1 - T + T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( 1 + T + T^{2} \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( 1 + T + T^{2} \) |
| 53 | \( 1 - T + T^{2} \) |
| 59 | \( 1 - T + T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( 1 - T + T^{2} \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( ( 1 + T )^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.995622522117783940440402367558, −8.459888309672847002348147435867, −7.26503202084182913036581662618, −6.49861910375060753609369311332, −5.92124174997527210759013136421, −5.34145684965402451874555086185, −4.51606729476713058672173168413, −3.33392642794848403023264919489, −2.23049463461544830115016484817, −1.04059624861241005661401964404,
1.04059624861241005661401964404, 2.23049463461544830115016484817, 3.33392642794848403023264919489, 4.51606729476713058672173168413, 5.34145684965402451874555086185, 5.92124174997527210759013136421, 6.49861910375060753609369311332, 7.26503202084182913036581662618, 8.459888309672847002348147435867, 8.995622522117783940440402367558