L(s) = 1 | − 3-s − 5-s − 13-s + 15-s − 17-s + 19-s + 25-s + 27-s + 29-s − 31-s + 39-s + 47-s + 49-s + 51-s − 53-s − 57-s + 59-s + 61-s + 65-s − 71-s + 73-s − 75-s + 2·79-s − 81-s + 85-s − 87-s − 89-s + ⋯ |
L(s) = 1 | − 3-s − 5-s − 13-s + 15-s − 17-s + 19-s + 25-s + 27-s + 29-s − 31-s + 39-s + 47-s + 49-s + 51-s − 53-s − 57-s + 59-s + 61-s + 65-s − 71-s + 73-s − 75-s + 2·79-s − 81-s + 85-s − 87-s − 89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5398218118\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5398218118\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 17 | \( 1 + T \) |
good | 3 | \( 1 + T + T^{2} \) |
| 7 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( 1 + T + T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( 1 - T + T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( 1 - T + T^{2} \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( 1 - T + T^{2} \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( ( 1 - T )^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.953721984378013146451965959053, −8.226838368981026667541897349792, −7.29616420060564575802186873079, −6.87284828746794899678553210822, −5.87501318340168522650533382157, −5.06114665322043199205552353887, −4.49279357154404013214470673763, −3.44892238198779535897256672260, −2.40794142918273952362710800015, −0.68834452274414551487474705001,
0.68834452274414551487474705001, 2.40794142918273952362710800015, 3.44892238198779535897256672260, 4.49279357154404013214470673763, 5.06114665322043199205552353887, 5.87501318340168522650533382157, 6.87284828746794899678553210822, 7.29616420060564575802186873079, 8.226838368981026667541897349792, 8.953721984378013146451965959053