Properties

Label 2-2720-136.101-c1-0-10
Degree $2$
Conductor $2720$
Sign $-0.751 - 0.659i$
Analytic cond. $21.7193$
Root an. cond. $4.66039$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.91·3-s + 5-s + 3.32i·7-s + 0.669·9-s − 5.61·11-s + 3.09i·13-s + 1.91·15-s + (−3.99 − 1.03i)17-s + 0.142i·19-s + 6.37i·21-s − 1.97i·23-s + 25-s − 4.46·27-s + 1.39·29-s + 5.08i·31-s + ⋯
L(s)  = 1  + 1.10·3-s + 0.447·5-s + 1.25i·7-s + 0.223·9-s − 1.69·11-s + 0.859i·13-s + 0.494·15-s + (−0.967 − 0.252i)17-s + 0.0327i·19-s + 1.39i·21-s − 0.411i·23-s + 0.200·25-s − 0.859·27-s + 0.259·29-s + 0.912i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.751 - 0.659i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.751 - 0.659i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2720\)    =    \(2^{5} \cdot 5 \cdot 17\)
Sign: $-0.751 - 0.659i$
Analytic conductor: \(21.7193\)
Root analytic conductor: \(4.66039\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2720} (2481, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2720,\ (\ :1/2),\ -0.751 - 0.659i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.434751895\)
\(L(\frac12)\) \(\approx\) \(1.434751895\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
17 \( 1 + (3.99 + 1.03i)T \)
good3 \( 1 - 1.91T + 3T^{2} \)
7 \( 1 - 3.32iT - 7T^{2} \)
11 \( 1 + 5.61T + 11T^{2} \)
13 \( 1 - 3.09iT - 13T^{2} \)
19 \( 1 - 0.142iT - 19T^{2} \)
23 \( 1 + 1.97iT - 23T^{2} \)
29 \( 1 - 1.39T + 29T^{2} \)
31 \( 1 - 5.08iT - 31T^{2} \)
37 \( 1 - 1.12T + 37T^{2} \)
41 \( 1 + 4.91iT - 41T^{2} \)
43 \( 1 - 10.2iT - 43T^{2} \)
47 \( 1 + 5.17T + 47T^{2} \)
53 \( 1 + 0.833iT - 53T^{2} \)
59 \( 1 + 1.78iT - 59T^{2} \)
61 \( 1 + 10.0T + 61T^{2} \)
67 \( 1 - 13.2iT - 67T^{2} \)
71 \( 1 - 13.0iT - 71T^{2} \)
73 \( 1 + 8.46iT - 73T^{2} \)
79 \( 1 - 13.5iT - 79T^{2} \)
83 \( 1 + 17.4iT - 83T^{2} \)
89 \( 1 - 12.8T + 89T^{2} \)
97 \( 1 + 4.67iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.979861363659086940345977344919, −8.508902836466546831141442208064, −7.86341605981366161887824168462, −6.90542350427433610803337772915, −6.00825955088637750492941039600, −5.23510550347759613462382733673, −4.45806201172780549998479920136, −3.07151191551264184425874159459, −2.55494217742510082559672150168, −1.91360007145924604569983712198, 0.34539252527599426788114602756, 1.93411224933812061394219147888, 2.77992627337007722771650562634, 3.51233520471401187527911906055, 4.51109884705117566101742492953, 5.36448474886055840697305712710, 6.28541294253808709079802879106, 7.35260292281405920159900667656, 7.83685731155563814111369236202, 8.372569478503532291186243190139

Graph of the $Z$-function along the critical line