L(s) = 1 | + (0.808 + 1.16i)2-s + (−0.0958 + 0.0958i)3-s + (−0.691 + 1.87i)4-s + (−0.447 − 0.447i)5-s + (−0.188 − 0.0336i)6-s + 0.608i·7-s + (−2.73 + 0.715i)8-s + 2.98i·9-s + (0.157 − 0.881i)10-s + (3.40 + 3.40i)11-s + (−0.113 − 0.246i)12-s + (−2.42 + 2.42i)13-s + (−0.706 + 0.492i)14-s + 0.0858·15-s + (−3.04 − 2.59i)16-s + 17-s + ⋯ |
L(s) = 1 | + (0.571 + 0.820i)2-s + (−0.0553 + 0.0553i)3-s + (−0.345 + 0.938i)4-s + (−0.200 − 0.200i)5-s + (−0.0770 − 0.0137i)6-s + 0.230i·7-s + (−0.967 + 0.253i)8-s + 0.993i·9-s + (0.0497 − 0.278i)10-s + (1.02 + 1.02i)11-s + (−0.0328 − 0.0710i)12-s + (−0.672 + 0.672i)13-s + (−0.188 + 0.131i)14-s + 0.0221·15-s + (−0.760 − 0.648i)16-s + 0.242·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.454 - 0.890i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.454 - 0.890i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.783949 + 1.28052i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.783949 + 1.28052i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.808 - 1.16i)T \) |
| 17 | \( 1 - T \) |
good | 3 | \( 1 + (0.0958 - 0.0958i)T - 3iT^{2} \) |
| 5 | \( 1 + (0.447 + 0.447i)T + 5iT^{2} \) |
| 7 | \( 1 - 0.608iT - 7T^{2} \) |
| 11 | \( 1 + (-3.40 - 3.40i)T + 11iT^{2} \) |
| 13 | \( 1 + (2.42 - 2.42i)T - 13iT^{2} \) |
| 19 | \( 1 + (-2.29 + 2.29i)T - 19iT^{2} \) |
| 23 | \( 1 + 8.44iT - 23T^{2} \) |
| 29 | \( 1 + (1.91 - 1.91i)T - 29iT^{2} \) |
| 31 | \( 1 - 8.60T + 31T^{2} \) |
| 37 | \( 1 + (-2.39 - 2.39i)T + 37iT^{2} \) |
| 41 | \( 1 - 4.54iT - 41T^{2} \) |
| 43 | \( 1 + (2.24 + 2.24i)T + 43iT^{2} \) |
| 47 | \( 1 - 5.03T + 47T^{2} \) |
| 53 | \( 1 + (8.40 + 8.40i)T + 53iT^{2} \) |
| 59 | \( 1 + (-3.63 - 3.63i)T + 59iT^{2} \) |
| 61 | \( 1 + (4.10 - 4.10i)T - 61iT^{2} \) |
| 67 | \( 1 + (6.40 - 6.40i)T - 67iT^{2} \) |
| 71 | \( 1 + 13.8iT - 71T^{2} \) |
| 73 | \( 1 - 12.6iT - 73T^{2} \) |
| 79 | \( 1 - 2.82T + 79T^{2} \) |
| 83 | \( 1 + (-10.0 + 10.0i)T - 83iT^{2} \) |
| 89 | \( 1 + 5.42iT - 89T^{2} \) |
| 97 | \( 1 - 14.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.18296880119283833160048113129, −11.74769450651718334054972989268, −10.21949206356669102698192823827, −9.142622373114176736556340544449, −8.192465247494108423069938869718, −7.17505317618713310178754901255, −6.34470644263064015059738693546, −4.84545386875165428006335468323, −4.37506439231050140980192789489, −2.51024989462559078659853048116,
1.08821497092078462060731150439, 3.17085747542493143653080296613, 3.87966464227075844893970150382, 5.45830220688667196517290942322, 6.31908896784462432506044071535, 7.64010716683390970544023576304, 9.136499915292979614624831450234, 9.748095205932126889718779789387, 10.90783435943536525328760548861, 11.76108098970475579450346742147