L(s) = 1 | + (1.27 − 0.611i)2-s + (0.148 + 0.148i)3-s + (1.25 − 1.55i)4-s + (−0.0348 + 0.0348i)5-s + (0.280 + 0.0985i)6-s − 1.59i·7-s + (0.642 − 2.75i)8-s − 2.95i·9-s + (−0.0231 + 0.0657i)10-s + (−2.14 + 2.14i)11-s + (0.417 − 0.0457i)12-s + (4.14 + 4.14i)13-s + (−0.976 − 2.03i)14-s − 0.0103·15-s + (−0.865 − 3.90i)16-s − 17-s + ⋯ |
L(s) = 1 | + (0.901 − 0.432i)2-s + (0.0857 + 0.0857i)3-s + (0.625 − 0.779i)4-s + (−0.0155 + 0.0155i)5-s + (0.114 + 0.0402i)6-s − 0.603i·7-s + (0.227 − 0.973i)8-s − 0.985i·9-s + (−0.00730 + 0.0207i)10-s + (−0.647 + 0.647i)11-s + (0.120 − 0.0132i)12-s + (1.15 + 1.15i)13-s + (−0.260 − 0.543i)14-s − 0.00267·15-s + (−0.216 − 0.976i)16-s − 0.242·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.573 + 0.819i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.573 + 0.819i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.88898 - 0.983357i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.88898 - 0.983357i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.27 + 0.611i)T \) |
| 17 | \( 1 + T \) |
good | 3 | \( 1 + (-0.148 - 0.148i)T + 3iT^{2} \) |
| 5 | \( 1 + (0.0348 - 0.0348i)T - 5iT^{2} \) |
| 7 | \( 1 + 1.59iT - 7T^{2} \) |
| 11 | \( 1 + (2.14 - 2.14i)T - 11iT^{2} \) |
| 13 | \( 1 + (-4.14 - 4.14i)T + 13iT^{2} \) |
| 19 | \( 1 + (-3.11 - 3.11i)T + 19iT^{2} \) |
| 23 | \( 1 - 1.47iT - 23T^{2} \) |
| 29 | \( 1 + (4.28 + 4.28i)T + 29iT^{2} \) |
| 31 | \( 1 + 10.6T + 31T^{2} \) |
| 37 | \( 1 + (-5.91 + 5.91i)T - 37iT^{2} \) |
| 41 | \( 1 - 11.7iT - 41T^{2} \) |
| 43 | \( 1 + (8.31 - 8.31i)T - 43iT^{2} \) |
| 47 | \( 1 + 3.71T + 47T^{2} \) |
| 53 | \( 1 + (-5.48 + 5.48i)T - 53iT^{2} \) |
| 59 | \( 1 + (-2.61 + 2.61i)T - 59iT^{2} \) |
| 61 | \( 1 + (-3.06 - 3.06i)T + 61iT^{2} \) |
| 67 | \( 1 + (-3.49 - 3.49i)T + 67iT^{2} \) |
| 71 | \( 1 + 3.25iT - 71T^{2} \) |
| 73 | \( 1 + 3.34iT - 73T^{2} \) |
| 79 | \( 1 - 3.31T + 79T^{2} \) |
| 83 | \( 1 + (4.33 + 4.33i)T + 83iT^{2} \) |
| 89 | \( 1 + 9.44iT - 89T^{2} \) |
| 97 | \( 1 - 5.37T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.61338669944835888425804307734, −11.19623305094165241647008305129, −9.924323334502601176002879192995, −9.264141253243284445171745334510, −7.59331886760288498963805373864, −6.63145347643671914228226332353, −5.59492101051363152208119036907, −4.20688407683465884815424886356, −3.45042783367778510345517493427, −1.61956845784685530218536168802,
2.42192268666097228866083214299, 3.58377561383995441060705824731, 5.22199418784307811827453482989, 5.68551942571976595198831603337, 7.07881362813061475362437144841, 8.114553562931672365202912072096, 8.762527644236425748314879358756, 10.60563219367039902758946147935, 11.11305543875010277701473766865, 12.28350863894483697342924944526