L(s) = 1 | + (−0.866 − 0.5i)7-s + (1.5 − 2.59i)11-s + (−0.866 + 0.5i)13-s + 6i·17-s + 4·19-s + (2.59 − 1.5i)23-s + (−1.5 + 2.59i)29-s + (−2.5 − 4.33i)31-s − 2i·37-s + (1.5 + 2.59i)41-s + (0.866 + 0.5i)43-s + (7.79 + 4.5i)47-s + (−3 − 5.19i)49-s + 6i·53-s + (1.5 + 2.59i)59-s + ⋯ |
L(s) = 1 | + (−0.327 − 0.188i)7-s + (0.452 − 0.783i)11-s + (−0.240 + 0.138i)13-s + 1.45i·17-s + 0.917·19-s + (0.541 − 0.312i)23-s + (−0.278 + 0.482i)29-s + (−0.449 − 0.777i)31-s − 0.328i·37-s + (0.234 + 0.405i)41-s + (0.132 + 0.0762i)43-s + (1.13 + 0.656i)47-s + (−0.428 − 0.742i)49-s + 0.824i·53-s + (0.195 + 0.338i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.972 + 0.232i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.972 + 0.232i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.760115242\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.760115242\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (0.866 + 0.5i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.866 - 0.5i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 6iT - 17T^{2} \) |
| 19 | \( 1 - 4T + 19T^{2} \) |
| 23 | \( 1 + (-2.59 + 1.5i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 - 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.5 + 4.33i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 2iT - 37T^{2} \) |
| 41 | \( 1 + (-1.5 - 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.866 - 0.5i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-7.79 - 4.5i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 6iT - 53T^{2} \) |
| 59 | \( 1 + (-1.5 - 2.59i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.5 + 11.2i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.06 + 3.5i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 + 10iT - 73T^{2} \) |
| 79 | \( 1 + (-5.5 + 9.52i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (7.79 + 4.5i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 + (-9.52 - 5.5i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.893521701767393291862324765596, −8.036854430390009222122484612066, −7.33580517017774476210052546471, −6.41472476230803739521172811380, −5.86411383093590383064641348072, −4.91466259543318138811294963548, −3.86060785697906169053930440476, −3.28155668170697041361954270769, −2.03067928753312742002325838902, −0.798899682111628645875452865526,
0.883927912402901540319852003873, 2.23674300011553588499729938641, 3.12368535933943603941275638930, 4.08586333565605284053376950274, 5.08934890088221056649849747497, 5.60246734878673315859947787575, 6.93509305638667594335096096287, 7.08203668177120011370457903692, 8.068340339683844538063810274338, 9.067359550587830029405615699512