L(s) = 1 | + 7-s + 13-s − 19-s + 2·31-s + 37-s − 2·43-s − 61-s + 67-s + 73-s − 79-s + 91-s + 97-s + 103-s + 2·109-s + ⋯ |
L(s) = 1 | + 7-s + 13-s − 19-s + 2·31-s + 37-s − 2·43-s − 61-s + 67-s + 73-s − 79-s + 91-s + 97-s + 103-s + 2·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.423954843\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.423954843\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - T + T^{2} \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( 1 - T + T^{2} \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 - T )^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 + T )^{2} \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.754644081605969587113585440394, −8.333350992389371529799634442428, −7.70360555381653242861203574239, −6.58233204856989175702754555454, −6.09167124349515989107413206348, −4.97310469955862315867529462787, −4.40777458705173725782031378483, −3.40686136555111625475175181240, −2.26024514438712231202783028769, −1.22564836106463277941432550181,
1.22564836106463277941432550181, 2.26024514438712231202783028769, 3.40686136555111625475175181240, 4.40777458705173725782031378483, 4.97310469955862315867529462787, 6.09167124349515989107413206348, 6.58233204856989175702754555454, 7.70360555381653242861203574239, 8.333350992389371529799634442428, 8.754644081605969587113585440394