L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)4-s + (1.67 − 0.448i)7-s + (−0.707 − 0.707i)8-s + (0.866 + 1.50i)14-s + (0.500 − 0.866i)16-s + (−0.258 + 0.965i)23-s + (−1.22 + 1.22i)28-s + (0.866 − 1.5i)29-s + (0.965 + 0.258i)32-s + (1.5 − 0.866i)41-s − 46-s + (0.258 + 0.965i)47-s + (1.73 − 1.00i)49-s + (−1.5 − 0.866i)56-s + ⋯ |
L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)4-s + (1.67 − 0.448i)7-s + (−0.707 − 0.707i)8-s + (0.866 + 1.50i)14-s + (0.500 − 0.866i)16-s + (−0.258 + 0.965i)23-s + (−1.22 + 1.22i)28-s + (0.866 − 1.5i)29-s + (0.965 + 0.258i)32-s + (1.5 − 0.866i)41-s − 46-s + (0.258 + 0.965i)47-s + (1.73 − 1.00i)49-s + (−1.5 − 0.866i)56-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.395 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.395 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.519590665\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.519590665\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.258 - 0.965i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-1.67 + 0.448i)T + (0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (0.258 - 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 47 | \( 1 + (-0.258 - 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.448 - 1.67i)T + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.965 - 0.258i)T + (0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 + 1.73T + T^{2} \) |
| 97 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.892015014007622288782517267258, −8.152032612270361228074895036066, −7.67365525204566255830689872342, −7.06211438150438996267739018992, −5.95271093355942766364428204855, −5.39379738208967722326496971503, −4.40601836671386213765639400548, −4.07615305001152466489610069950, −2.63007653405636122465019883807, −1.21944424120963385988471203661,
1.23617580004521859076255459043, 2.12808453475780016851709470109, 3.02103935700100006035127423170, 4.23457296693519691764216003848, 4.81488335838217564855373210724, 5.46427136134700145990838466243, 6.40899724280893882907453534729, 7.61028843606626701805405724920, 8.395246678830280283029750121488, 8.811051653345835433168342153390